l2 DECOUPLING IN R2 FOR CURVES WITH VANISHING CURVATURE

被引:4
|
作者
Biswas, Chandan [1 ,2 ]
Gilula, Maxim [3 ]
Li, Linhan [4 ,5 ]
Schwend, Jeremy [2 ]
Xi, Yakun [6 ]
机构
[1] Univ Cincinnati, Math Sci Dept, Cincinnati, OH 45221 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[4] Brown Univ, Dept Math, Providence, RI 02912 USA
[5] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[6] Univ Rochester, Dept Math, Rochester, NY 14620 USA
基金
美国国家科学基金会;
关键词
L-P; PROOF;
D O I
10.1090/proc/14954
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We expand the class of curves (phi(1)(t), phi(2)(t)), t is an element of [0, 1] for which the l(2) decoupling conjecture holds for 2 <= p <= 6. Our class of curves includes all real-analytic regular curves with isolated points of vanishing curvature and all curves of the form (t, t(1+nu)) for nu is an element of (0, infinity).
引用
收藏
页码:1987 / 1997
页数:11
相关论文
共 50 条
  • [31] VANISHING OF COHOMOLOGY AND CALCULATION OF PERTURBATIONS IN L2
    MALLIAVIN, P
    BULLETIN DES SCIENCES MATHEMATIQUES, 1976, 100 (04): : 331 - 336
  • [32] Multiple Regression in L2 Research: A Methodological Synthesis and Guide to Interpreting R2 Values
    Plonsky, Luke
    Ghanbar, Hessameddin
    MODERN LANGUAGE JOURNAL, 2018, 102 (04): : 713 - 731
  • [33] On the Resolvent Existence and the Separability of a Hyperbolic Operator with Fast Growing Coefficients in L2(R2)
    Muratbekov, Mussakan
    Bayandiyev, Yerik
    FILOMAT, 2021, 35 (03) : 707 - 721
  • [34] l2 Decoupling for Certain Surfaces of Finite Type in R3
    Li, Zhuo Ran
    Zheng, Ji Qiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (08) : 1442 - 1458
  • [35] A vanishing theorem on L2 harmonic forms
    Chen, ZH
    Zhou, CH
    ACTA MATHEMATICA SCIENTIA, 2002, 22 (03) : 379 - 387
  • [36] THE ISOPERIMETRIC DEFICIT OF EQUICHORDAL CURVES IN R2
    Wang, Zhenyi
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2019, 31 (02) : 192 - 200
  • [37] PLANE CURVES IN AN IMMERSED GRAPH IN R2
    Sakamoto, Marisa
    Taniyama, Kouki
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2013, 22 (02)
  • [38] Mixed Norm l2 Decoupling for Paraboloids
    Dasu, Shival
    Jung, Hongki
    Li, Zane Kun
    Madrid, Jose
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (20) : 17972 - 18000
  • [39] A Study Guide for the l2 Decoupling Theorem
    Bourgain, Jean
    Demeter, Ciprian
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 173 - 200
  • [40] A study guide for the l2 decoupling theorem
    Jean Bourgain
    Ciprian Demeter
    Chinese Annals of Mathematics, Series B, 2017, 38 : 173 - 200