Stability of the Gibbs sampler for Bayesian hierarchical models

被引:30
|
作者
Papaspiliopoulos, Omiros [1 ]
Roberts, Gareth [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
来源
ANNALS OF STATISTICS | 2008年 / 36卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
geometric ergodicity; capacitance; collapsed Gibbs sampler; state-space models; parametrization; Bayesian robustness;
D O I
10.1214/009053607000000749
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We characterize the convergence of the Gibbs sampler which samples from the joint posterior distribution of parameters and missing data in hierarchical linear models with arbitrary symmetric error distributions. We show that the convergence can be uniform, geometric or subgeometric depending on the relative tail behavior of the error distributions, and on the parametrization chosen. Our theory is applied to characterize the convergence of the Gibbs sampler on latent Gaussian process models. We indicate how the theoretical framework we introduce will be useful in analyzing more complex models.
引用
收藏
页码:95 / 117
页数:23
相关论文
共 50 条