CO2 Capture by a K2CO3-Carbon Composite under Moist Conditions

被引:14
|
作者
Nasiman, Tuerxun [1 ]
Kanoh, Hirofumi [1 ]
机构
[1] Chiba Univ, Grad Sch Sci, Chiba 2638522, Japan
基金
日本学术振兴会;
关键词
DOPED POROUS CARBONS; FIXED-BED OPERATIONS; DIOXIDE CAPTURE; SORPTION; ADSORPTION; KINETICS; RECOVERY; GASES; SHELL;
D O I
10.1021/acs.iecr.9b05498
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Potassium carbonate (K2CO3) is recognized as a potential candidate for CO2 capture by flue gas under moist conditions because of its high sorption capacity and low cost. However, undesirable effects and characteristics that are associated with the desorption process, such as the slow reaction rate and the high regeneration temperature, lead to high energy costs and thus hinder its application. To improve the CO2 capture properties of K2CO3 under moist conditions, we investigated in this study the reaction rate and the regeneration temperature of a K2CO3 -carbon composite (KC-CC), which was prepared from terephthalic acid and KOH. The successful synthesis of KC-CC was confirmed by the X-ray diffraction and Raman spectrometry results, while the CO2 capture characteristics of KC-CC under moist conditions were examined by thermogravimetric analysis. The CO2 capture experiment was repeated twice. The CO2 capture by KC-CC was faster than that by bulk K2CO3, while after the CO2 capture, the regeneration proceeded at lower temperatures compared to bulk KHCO3. Moreover, after a 10-cycle repetition of the CO2 capture experiment, KC-CC exhibited a stable performance. Thus, compared to bulk K2CO3, KC-CC could efficiently capture CO2 at an increased reaction rate and a lower regeneration temperature. This may be due to the nanostructural properties of KC-CC, which were also indicated by the results of XRD analysis.
引用
收藏
页码:3405 / 3412
页数:8
相关论文
共 50 条
  • [31] Adsorption of CO2 in presence of NOx and SOx on activated carbon textile for CO2 capture in post-combustion conditions
    S. Boumghar
    S. Bedel
    L. Sigot
    C. Vallières
    Adsorption, 2020, 26 : 1173 - 1181
  • [32] Interactions of CO2/brine/rock under CO2 sequestration conditions
    US DOE, NETL, Pittsburgh
    PA, United States
    ACS Natl. Meet. Book Abstr., 1600,
  • [33] Interactions of CO2/brine/rock under CO2 storage conditions
    Soong, Yee
    Crandall, Dustin
    Dalton, Laurel
    Mclendon, Robert
    Zhang, Liwei
    Lin, Ronghong
    Howard, Bret
    Haljasmaa, Igor
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [34] Interactions of CO2/brine/rock under CO2 sequestration conditions
    Soong, Yee
    Howard, Bret
    Crandall, Dustin
    McLendon, Robert
    Irdi, Gino
    Dilmore, Robert
    Zhang, Liwei
    Lin, Ronghong
    Haljasmaa, Igor
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [35] Study on fabrication conditions for activated carbon fibre adsorbents for CO2 capture
    An, Hui
    Thiruvenkatachari, Ramesh
    Yu, Xingxiang
    Feng, Bo
    Sui, Shi
    PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON COAL COMBUSTION, 2007, : 796 - 803
  • [36] Mesoporous carbon supported MgO for CO2 capture and separation of CO2/N2
    Burri, Harshitha
    Anjum, Rumana
    Gurram, Ramesh Babu
    Mitta, Harisekhar
    Mutyala, Suresh
    Jonnalagadda, Madhavi
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2019, 36 (09) : 1482 - 1488
  • [37] Mesoporous carbon supported MgO for CO2 capture and separation of CO2/N2
    Harshitha Burri
    Rumana Anjum
    Ramesh Babu Gurram
    Harisekhar Mitta
    Suresh Mutyala
    Madhavi Jonnalagadda
    Korean Journal of Chemical Engineering, 2019, 36 : 1482 - 1488
  • [38] The CO2 reduction potential for the oxygen blast furnace with CO2 capture and storage under hydrogen-enriched conditions
    Xia, Zhenxiao
    Jiang, Zeyi
    Zhang, Xinru
    Li, Zhen
    Lu, Yuanxiang
    He, Yewei
    Chen, Jialei
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2022, 121
  • [39] CO2 capture under humid conditions in metal-organic frameworks
    Gonzalez-Zamora, Eduardo
    Ibarra, Ilich A.
    MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (08) : 1471 - 1484
  • [40] Composite hollow fiber membranes for CO2 capture
    Sandru, Marius
    Haukebo, Siv Hustad
    Hagg, May-Britt
    JOURNAL OF MEMBRANE SCIENCE, 2010, 346 (01) : 172 - 186