Nonasymptotic support recovery for high-dimensional sparse covariance matrices

被引:2
|
作者
Kashlak, Adam B. [1 ]
Kong, Linglong [1 ]
机构
[1] Univ Alberta, Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
来源
STAT | 2021年 / 10卷 / 01期
关键词
concentration inequality; genomics; random matrix; Schatten norm; REGULARIZATION; ESTIMATORS;
D O I
10.1002/sta4.316
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For high-dimensional data, the standard empirical estimator for the covariance matrix is very poor, and thus many methods have been proposed to more accurately estimate the covariance structure of high-dimensional data. In this article, we consider estimation under the assumption of sparsity but regularize with respect to the individual false-positive rate for incorrectly including a matrix entry in the support of the final estimator. The two benefits of this approach are (1) an interpretable regularization parameter removing the need for computationally expensive tuning and (2) extremely fast computation time arising from use of a binary search algorithm implemented to find the best estimator within a carefully constructed operator norm ball. We compare our approach to universal thresholding estimators and lasso-style penalized estimators on both simulated data and data from gene expression for cancerous tumours.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Robust estimation of high-dimensional covariance and precision matrices
    Avella-Medina, Marco
    Battey, Heather S.
    Fan, Jianqing
    Li, Quefeng
    BIOMETRIKA, 2018, 105 (02) : 271 - 284
  • [32] Projection tests for high-dimensional spiked covariance matrices
    Guo, Wenwen
    Cui, Hengjian
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 169 : 21 - 32
  • [33] Element Aggregation for Estimation of High-Dimensional Covariance Matrices
    Yang, Jingying
    MATHEMATICS, 2024, 12 (07)
  • [34] TWO SAMPLE TESTS FOR HIGH-DIMENSIONAL COVARIANCE MATRICES
    Li, Jun
    Chen, Song Xi
    ANNALS OF STATISTICS, 2012, 40 (02): : 908 - 940
  • [35] Hypothesis testing for the identity of high-dimensional covariance matrices
    Qian, Manling
    Tao, Li
    Li, Erqian
    Tian, Maozai
    STATISTICS & PROBABILITY LETTERS, 2020, 161
  • [36] Testing the equality of multiple high-dimensional covariance matrices
    Shen J.
    Results in Applied Mathematics, 2022, 15
  • [37] Robust Shrinkage Estimation of High-Dimensional Covariance Matrices
    Chen, Yilun
    Wiesel, Ami
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (09) : 4097 - 4107
  • [38] ADAPTIVE TESTS FOR BANDEDNESS OF HIGH-DIMENSIONAL COVARIANCE MATRICES
    Wang, Xiaoyi
    Xu, Gongjun
    Zheng, Shurong
    STATISTICA SINICA, 2023, 33 : 1673 - 1696
  • [39] High-Dimensional Dynamic Covariance Matrices With Homogeneous Structure
    Ke, Yuan
    Lian, Heng
    Zhang, Wenyang
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (01) : 96 - 110
  • [40] Group Lasso Estimation of High-dimensional Covariance Matrices
    Bigot, Jeremie
    Biscay, Rolando J.
    Loubes, Jean-Michel
    Muniz-Alvarez, Lilian
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 3187 - 3225