Interpolation and denoising of nonuniformly sampled data using wavelet-domain processing

被引:7
|
作者
Choi, H [1 ]
Baraniuk, R [1 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77251 USA
关键词
D O I
10.1109/ICASSP.1999.756307
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we link concepts from nonuniform sampling, smoothness function spaces, interpolation, and denoising to derive a suite of multiscale, maximum-smoothness interpolation algorithms. We formulate the interpolation problem as the optimization of finding the signal that matches the given samples with smallest norm in a function smoothness space. For signals in the Besov space B-q(alpha)(L-p), the optimization corresponds to convex programming in the wavelet domain; for signals in the Sobolev space W-alpha(L-2), the optimization reduces to a simple weighted least-squares problem. An optional wavelet shrinkage regularization step makes the algorithm suitable for even noisy sample data, unlike classical approaches such as bandlimited and spline interpolation.
引用
收藏
页码:1645 / 1648
页数:4
相关论文
共 50 条
  • [41] Stationary wavelet-domain local adaptive denoising method for insulator infrared thermal image
    Li, Zuo-Sheng
    Yao, Jian-Gang
    Yang, Ying-Jian
    Yuan, Tian
    Li, Wen-Jie
    Gaodianya Jishu/High Voltage Engineering, 2009, 35 (04): : 833 - 837
  • [42] The application of wavelet-domain Hidden Markov Tree Model in diabetic retinal image denoising
    Department of Radiology, Taishan Medical University, Taian, China
    不详
    不详
    Open Biomed. Eng. J., (194-198):
  • [43] Image enhancement using wavelet-domain mixture models
    Shi, Fei
    Selesnick, Ivan W.
    Guleryuz, Onur
    2006 IEEE 12TH DIGITAL SIGNAL PROCESSING WORKSHOP & 4TH IEEE SIGNAL PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, 2006, : 590 - 595
  • [44] The Independent Variable Interpolation Technique for Nonuniformly Sampled Shallow-Angle Lidar Data
    Belmont, M. R.
    Ashwin, P.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2011, 28 (12) : 1672 - 1678
  • [45] Parametric interpolation using sampled data
    Jeong, SY
    Choi, YJ
    Park, PG
    COMPUTER-AIDED DESIGN, 2006, 38 (01) : 39 - 47
  • [46] Wavelet-domain image shrinkage using variance field diffusion
    Liu, Zhenyu
    Tian, Jing
    Chen, Li
    Wang, Yongtao
    2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 321 - 324
  • [47] Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography
    Dolganova, Irina N.
    Chernomyrdin, Nikita V.
    Aleksandrova, Polina V.
    Beshplav, Sheykh-Islyam T.
    Potapov, Alexander A.
    Reshetov, Igor V.
    Kurlov, Vladimir N.
    Tuchin, Valery V.
    Zaytsev, Kirill I.
    JOURNAL OF BIOMEDICAL OPTICS, 2018, 23 (09)
  • [48] A FREQUENCY-DOMAIN CHARACTERIZATION OF INTERPOLATION FROM NONUNIFORMLY SPACED DATA
    KAKAZU, G
    MUNSON, DC
    1989 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-3, 1989, : 288 - 291
  • [49] Wavelet-domain demosaicking using linear estimation of interchannel correlation
    Kim, Hyuk Su
    Kim, Sang Soo
    Eom, Il Kyu
    OPTICAL ENGINEERING, 2008, 47 (06)
  • [50] Flame image of pint-sized power plant's boiler denoising using wavelet-domain HMT models
    Ji, CG
    Zhang, R
    Wen, ST
    Li, SY
    ADVANCES IN INTELLIGENT COMPUTING, PT 2, PROCEEDINGS, 2005, 3645 : 910 - 919