Learning task-specific discriminative embeddings for few-shot image classification

被引:19
|
作者
Xing, Lei [1 ]
Shao, Shuai [2 ]
Liu, Weifeng [2 ]
Han, Anxun [1 ]
Pan, Xiangshuai [1 ]
Liu, Bao-Di [2 ]
机构
[1] China Univ Petr, Coll Oceanog & Space Informat, Qingdao 266580, Peoples R China
[2] China Univ Petr, Coll Control Sci & Engn, Qingdao 266580, Peoples R China
关键词
Few-shot learning; Dictionary learning; Task-specific discriminative embeddings;
D O I
10.1016/j.neucom.2022.02.073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, few-shot learning has attracted more and more attention. Generally, the fine-tuning-based few shot learning framework contains two stages: i) In the pre-training stage, using base data to train the feature extractor; ii) In the meta-testing stage, using a well-trained feature extractor to extract embedding features of novel data and designing a base learner to predict the labels. Due to the diverse categories of base and novel data, it is challenging for the feature extractor trained in the pre-training stage to adapt to novel data, which will result in an embedding-mismatch problem. This paper proposes Task-specific Discriminative Embeddings for Few-shot Learning (TDE-FSL) to solve the embedding-mismatch problem. Specifically, we embed the dictionary learning method into the few-shot learning framework to map the feature embeddings to a more discriminative subspace to adapt to the specific task. Moreover, we extend the self-training framework to our approach to fully utilize the unlabeled data. Finally, we evaluate the TDE-FSL on five benchmark image datasets, such as mini-Imagenet, tiered-Imagenet, CIFAR-FS, FC100, and CUB dataset. The experimental results show that the performance of our proposed TDE-FSL achieves a significant improvement.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] Few-shot learning for skin lesion image classification
    Xue-Jun Liu
    Kai-li Li
    Hai-ying Luan
    Wen-hui Wang
    Zhao-yu Chen
    Multimedia Tools and Applications, 2022, 81 : 4979 - 4990
  • [22] Deep Few-Shot Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Xuchu
    Yu, Anzhu
    Zhang, Pengqiang
    Wan, Gang
    Wang, Ruirui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2290 - 2304
  • [23] Federated Learning and Optimization for Few-Shot Image Classification
    Zuo, Yi
    Chen, Zhenping
    Feng, Jing
    Fan, Yunhao
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 4649 - 4667
  • [24] Learning to Calibrate Prototypes for Few-Shot Image Classification
    Liang, Chenchen
    Jiang, Chenyi
    Wang, Shidong
    Zhang, Haofeng
    COGNITIVE COMPUTATION, 2025, 17 (01)
  • [25] Few-shot learning for skin lesion image classification
    Liu, Xue-Jun
    Li, Kai-li
    Luan, Hai-ying
    Wang, Wen-hui
    Chen, Zhao-yu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 4979 - 4990
  • [26] Multi-task few-shot learning with composed data augmentation for image classification
    Zhang, Rui
    Yang, Yixin
    Li, Yang
    Wang, Jiabao
    Li, Hang
    Miao, Zhuang
    IET COMPUTER VISION, 2023, 17 (02) : 211 - 221
  • [27] SIM: an improved few-shot image classification model with multi-task learning
    Guo, Jin
    Li, Wengen
    Guan, Jihong
    Gao, Hang
    Liu, Baobo
    Gong, Lili
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (03)
  • [28] Learning to Learn Task Transformations for Improved Few-Shot Classification
    Zheng, Guangtao
    Suo, Qiuling
    Huai, Mengdi
    Zhang, Aidong
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 784 - 792
  • [29] Multi-task classification network for few-shot learning
    Ji, Zhong
    Liu, Yuanheng
    Wang, Xuan
    Liu, Jingren
    Cao, Jiale
    Yu, Yunlong
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2025, 14 (01)
  • [30] Smoothed Embeddings for Certified Few-Shot Learning
    Pautov, Mikhail
    Kuznetsova, Olesya
    Tursynbek, Nurislam
    Petiushko, Aleksandr
    Oseledets, Ivan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,