Electrolysis of CO2 to Syngas in Bipolar Membrane-Based Electrochemical Cells

被引:253
|
作者
Li, Yuguang C. [1 ,2 ,3 ]
Zhou, Dekai [1 ,2 ,3 ]
Yan, Zhifei [1 ,2 ,3 ]
Goncalves, Ricardo H. [1 ,2 ,3 ]
Salvatore, Danielle A. [4 ,5 ]
Berlinguette, Curtis P. [4 ,5 ]
Mallouk, Thomas E. [1 ,2 ,3 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[4] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z2, Canada
[5] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z2, Canada
来源
ACS ENERGY LETTERS | 2016年 / 1卷 / 06期
关键词
CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; SELECTIVE CONVERSION; PH GRADIENTS; CATALYSTS; INSIGHTS; ELECTRODES; EFFICIENCY; EVOLUTION;
D O I
10.1021/acsenergylett.6b00475
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrolysis of CO, to syngas (CO + H-2) using nonprecious metal electrocatalysts was studied in bipolar membrane -based electrochemical cells. Electrolysis was carried out using aqueous bicarbonate and humidified gaseous CO, on the cathode side of the cell, with Ag or Bi/ionic liquid cathode electrocatalysts. In both cases, stable currents were observed over a period of hours with an aqueous alkaline electrolyte and NiFeOx electrocatalyst on the anode side of the cell. In contrast, the performance of the cells degraded rapidly when conventional anion and cation-exchange membranes were used in place of the bipolar membrane. In agreement with earlier reports, the Faradaic efficiency for CO, reduction to CO was high at low overpotential. In the liquid-phase bipolar membrane cell, the Faradaic efficiency was stable at about 50% at 30 mA/cm(2) current density. In the gas-phase cell, current densities up to 200 mA/cm(2) could be obtained, albeit at lower Faradaic efficiency for CO production. At low overpotentials in the gas-phase cathode cell, the Faradaic efficiency for CO production was initially high but dropped within 1 h, most likely because of dewetting of the ionic liquid from the Bi catalyst surface. The effective management of protons in bipolar membrane cells enables stable operation and the possibility of practical CO, electrolysis at high current densities.
引用
收藏
页码:1149 / 1153
页数:5
相关论文
共 50 条
  • [31] Electrochemical Reduction of CO2 on Metal-Based Cathode Electrocatalysts of Solid Oxide Electrolysis Cells
    Carneiro, Juliana
    Gu, Xiang-Kui
    Tezel, Elif
    Nikolla, Eranda
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (36) : 15884 - 15893
  • [32] Dynamic response and flexibility analyses of a membrane-based CO2 separation module
    Asadi, Javad
    Kazempoor, Pejman
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2022, 116
  • [33] On a membrane-based process for CO2 capture from internal combustion vehicles
    Nicolas, Charles-Henri
    Alshebani, Awad
    Pera-Titus, Marc
    Roumegoux, Jean-Pierre
    Schiestel, Thomas
    Miachon, Sylvain
    Dalmon, Jean-Alain
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [34] Intensified co-electrolysis process for syngas production from captured CO2
    Gao, Ningshengjie
    Quiroz-Arita, Carlos
    Diaz, Luis A.
    Lister, Tedd E.
    JOURNAL OF CO2 UTILIZATION, 2021, 43
  • [35] Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells
    Chen, Xinbing
    Guan, Chengzhi
    Xiao, Guoping
    Du, Xianlong
    Wang, Jian-Qiang
    FARADAY DISCUSSIONS, 2015, 182 : 341 - 351
  • [36] Bipolar membranes for intrinsically stable and scalable CO2 electrolysis
    Petrov, Kostadin V.
    Koopman, Christel I.
    Subramanian, Siddhartha
    Koper, Marc T. M.
    Burdyny, Thomas
    Vermaas, David A.
    NATURE ENERGY, 2024, 9 (08): : 932 - 938
  • [37] Cost-optimal CO2 capture ratio for membrane-based capture from different CO2 sources
    Roussanaly, Simon
    Anantharaman, Rahul
    CHEMICAL ENGINEERING JOURNAL, 2017, 327 : 618 - 628
  • [38] An all-oxide electrolysis cells for syngas production with tunable H2/CO yield via co-electrolysis of H2O and CO2
    Bian, Liuzhen
    Duan, Chuancheng
    Wang, Lijun
    Chen, Zhiyuan
    Hou, Yunting
    Peng, Jun
    Song, Xiwen
    An, Shengli
    O'Hayre, Ryan
    JOURNAL OF POWER SOURCES, 2021, 482 (482)
  • [39] CO2 Fixation by Membrane Separated NaCl Electrolysis
    Park, Hyun Sic
    Lee, Ju Sung
    Han, JunYoung
    Park, Sangwon
    Park, Jinwon
    Min, Byoung Ryul
    ENERGIES, 2015, 8 (08): : 8704 - 8715
  • [40] Fabrication of Au Catalysts for Electrochemical Reduction of CO2 to Syngas
    Ham, Yu Seok
    Kim, Myung Jun
    Choi, Jihui
    Choe, Seunghoe
    Lim, Taeho
    Kim, Soo-Kil
    Kim, Jae Jeong
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (10) : 10846 - 10852