NUMERICAL SIMULATION OF COMPRESSIBLE FLOWS BY USING HIGHER-ORDER FINITE VOLUME SCHEMES BASED ON THE MOVING LEAST SQUARES METHOD

被引:0
|
作者
Nogueira, X. [1 ]
Cueto-Felgueroso, L. [1 ,2 ]
Colominas, I. [1 ]
机构
[1] Univ A Coruna, GMNI, Dept Metodos Matemat & Representac, ETSI Caminos Canales & Puertos, La Coruna 15071, Spain
[2] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
关键词
NAVIER-STOKES EQUATIONS; UNSTRUCTURED GRIDS; EULER EQUATIONS; DIFFERENCE-SCHEMES; CONSERVATION-LAWS; GALERKIN METHOD; SOLVERS; CONVERGENCE; MESHES; SOUND;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we show a numerical methodology for the resolution of compressible flows in both, structured and unstructured grids. The Moving Least Squares method (MLS) is used for the computation of the gradients and successive derivatives in a higher-order finite volume framework. Using the multiresolution properties of the MLS methodology, we define a shock-detection methodology. This new methodology allows the extension of slope limiters to finite volume methods with order higher than two. We present some numerical examples that show the accuracy and robustness of the numerical method.
引用
收藏
页码:83 / 107
页数:25
相关论文
共 50 条
  • [21] A higher-order unsplit 2D direct Eulerian finite volume method for two-material compressible flows based on the MOOD paradigms
    Diot, S.
    Francois, M. M.
    Dendy, E. D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 76 (12) : 1064 - 1087
  • [22] On the modeling and simulation of higher order breakage for vertical bubbly flows using the least squares method: Applications for bubble column and pipe flows
    Borka, Z.
    Jakobsen, H. A.
    CHISA 2012, 2012, 42 : 1270 - 1281
  • [23] Efficient higher-order finite volume schemes for (real gas) magnetohydrodynamics
    Dedner, A
    Rohde, C
    Wesenberg, M
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2003, : 499 - 508
  • [24] On the properties of high-order least-squares finite-volume schemes
    Saez-Mischlich, G.
    Sierra-Ausin, J.
    Grondin, G.
    Gressier, J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 457
  • [25] High Order Finite Volume Schemes for Numerical Solution of Unsteady Flows
    Furmanek, Petr
    Furst, Jiri
    Kozel, Karel
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 335 - 342
  • [26] Numerical Simulation of Planar 4∶1 Contraction Flow of a Viscoelastic Fluid Using a Higher-order Up wind Finite Volume Method
    王保国
    孙成海
    赵兰水
    叶占银
    Tsinghua Science and Technology, 2000, (01) : 54 - 59
  • [27] Characteristic Based Volume Penalization Method for Numerical Simulation of Compressible Flows on Unstructured Meshes
    Abalakin, I., V
    Vasilyev, O. V.
    Zhdanova, N. S.
    Kozubskaya, T. K.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (08) : 1315 - 1329
  • [28] Characteristic Based Volume Penalization Method for Numerical Simulation of Compressible Flows on Unstructured Meshes
    I. V. Abalakin
    O. V. Vasilyev
    N. S. Zhdanova
    T. K. Kozubskaya
    Computational Mathematics and Mathematical Physics, 2021, 61 : 1315 - 1329
  • [29] Moving Kriging reconstruction for high-order finite volume computation of compressible flows
    Chassaing, Jean-Camille
    Nogueira, Xesus
    Khelladi, Sofiane
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 : 463 - 478
  • [30] A Lagrangian finite volume method for the simulation of flows with moving boundaries
    Ata, Riadh
    Soulamani, Azzeddine
    Chinesta, Francisco
    10TH ESAFORM CONFERENCE ON MATERIAL FORMING, PTS A AND B, 2007, 907 : 1412 - +