On Berry-Esseen bounds of summability transforms

被引:2
|
作者
Fridy, JA [1 ]
Goonatilake, RA
Khan, MK
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Texas A&M Int Univ, Dept Math, Laredo, TX 78041 USA
关键词
approximation operators; central limit theorem; convolution methods; Schnabl operators;
D O I
10.1090/S0002-9939-03-06987-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Y-n,Y-k, k = 0, 1, 2, ..., n greater than or equal to 1, be a collection of random variables, where for each n, Y-n,Y-k, k = 0, 1, 2,..., are independent. Let A = [p(n, k)] be a regular summability method. We provide some rates of convergence (Berry-Esseen type bounds) for the weak convergence of summability transform (AY). We show that when A = [p(n,k)] is the classical Cesaro summability method, the rate of convergence of the resulting central limit theorem is best possible among all regular triangular summability methods with rows adding up to one. We further provide some summability results concerning l(2)-negligibility. An application of these results characterizes the rate of convergence of Schnabl operators while approximating Lipschitz continuous functions.
引用
收藏
页码:273 / 282
页数:10
相关论文
共 50 条
  • [31] NEW BERRY-ESSEEN BOUNDS FOR FUNCTIONALS OF BINOMIAL POINT PROCESSES
    Lachieze-Rey, Raphael
    Peccati, Giovanni
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 1992 - 2031
  • [32] Berry-Esseen bounds for standardized subordinators via moduli of smoothness
    Adell, Jose Antonio
    Lekuona, Alberto
    JOURNAL OF THEORETICAL PROBABILITY, 2007, 20 (02) : 221 - 235
  • [33] Berry-Esseen bounds for parameter estimation of general Gaussian processes
    Douissi, Soukaina
    Es-Sebaiy, Khalifa
    Viens, Frederi G.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (01): : 633 - 664
  • [34] REVERSING THE BERRY-ESSEEN INEQUALITY
    HALL, P
    BARBOUR, AD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 90 (01) : 107 - 110
  • [35] BERRY-ESSEEN BOUNDS FOR ERROR VARIANCE ESTIMATES IN LINEAR-MODELS
    CHEN, XR
    SCIENTIA SINICA, 1981, 24 (07): : 899 - 913
  • [36] A SHARPENING OF INEQUALITY OF BERRY-ESSEEN
    ZOLOTAREV, VM
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 8 (04): : 332 - +
  • [37] Berry-Esseen bounds for smooth estimator of a distribution function under association
    Cai, ZW
    Roussas, GG
    JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 11 (1-3) : 79 - 106
  • [38] BERRY-ESSEEN BOUNDS FOR FINITE-POPULATION U-STATISTICS
    赵林城
    陈希孺
    Science China Mathematics, 1987, (02) : 113 - 127
  • [39] Berry-Esseen bounds and multivariate limit theorems for functionals of Rademacher sequences
    Krokowski, Kai
    Reichenbachs, Anselm
    Thale, Christoph
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02): : 763 - 803
  • [40] An improvement of the Berry-Esseen inequalities
    V. Yu. Korolev
    I. G. Shevtsova
    Doklady Mathematics, 2010, 81 : 119 - 123