Monotonic relation-constrained Takagi-Sugeno-Kang fuzzy system

被引:16
|
作者
Deng, Zhaohong [1 ,2 ]
Cao, Ya [1 ,2 ]
Lou, Qiongdan [1 ,2 ]
Choi, Kup-Sze [3 ]
Wang, Shitong [1 ,2 ,4 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangsu Key Lab Digital Design & Software Technol, Wuxi 214122, Jiangsu, Peoples R China
[3] Hong Kong Polytech Univ, Ctr Smart Hlth, Hong Kong, Peoples R China
[4] Jiangsu Key Construct Lab IoT Applicat Technol, Wuxi, Jiangsu, Peoples R China
关键词
Takagi-Sugeno-Kang fuzzy system; Monotonicity constraint; Tikhonov regularization; Classification; STATISTICAL COMPARISONS; CLASSIFICATION; CLASSIFIERS; ALGORITHM; FCM;
D O I
10.1016/j.ins.2021.09.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Takagi-Sugeno-Kang fuzzy system has wide applications across different areas, e.g., regression, classification and decision making, attributed to its high precision and inter-pretability. However, the existing Takagi-Sugeno-Kang fuzzy system is not an ideal solu-tion to some special scenarios, particularly for those that are constrained monotonically. To this end, a monotonic relation-constrained Takagi-Sugeno-Kang fuzzy system classifier is proposed in this paper. The proposed method introduces a monotonic relation between the inputs and the outputs, where the objective function is expressed in a monotonically constrained form and a strategy for generating monotonicity constraint pairs is developed. Furthermore, to address the convexity loss caused by the increasing monotonicity con-straints, the proposed method introduces the Tikhonov regularization strategy to ensure the uniqueness and boundedness of the solution. The results from extensive experiments show that the proposed method exhibits better classification performance than the original Takagi-Sugeno-Kang fuzzy system and state-of-the-art monotonic classification methods in handling monotonic datasets. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:243 / 257
页数:15
相关论文
共 50 条
  • [31] Suppression of Structural Vibrations of an Overhead Crane Using Takagi-Sugeno-Kang Fuzzy Controller
    Tolochko, Olga
    Bazhutin, Denys
    2020 XI INTERNATIONAL CONFERENCE ON ELECTRICAL POWER DRIVE SYSTEMS (ICEPDS), 2020,
  • [32] Takagi-Sugeno-Kang Fuzzy Classifiers for a Special Class of Time-Varying Systems
    Mikut, Ralf
    Burmeister, Ole
    Groell, Lutz
    Reischl, Markus
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (04) : 1038 - 1049
  • [33] A Comprehensive Adaptive Interpretable Takagi-Sugeno-Kang Fuzzy Classifier for Fatigue Driving Detection
    Gao, Dongrui
    Liu, Shihong
    Gao, Yingxian
    Li, Pengrui
    Zhang, Haokai
    Wang, Manqing
    Yan, Shen
    Wang, Lutao
    Zhang, Yongqing
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2025, 33 (01) : 108 - 119
  • [34] Assessing the Adequacy of Hemodialysis Patients via the Graph-Based Takagi-Sugeno-Kang Fuzzy System
    Du, Aiyan
    Shi, Xiaofen
    Guo, Xiaoyi
    Pei, Qixiao
    Ding, Yijie
    Zhou, Wei
    Lu, Qun
    Shi, Hua
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [35] A global-local learning algorithm for identifying Takagi-Sugeno-Kang fuzzy models
    Yen, J
    Wang, L
    Gillespie, W
    1998 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AT THE IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - PROCEEDINGS, VOL 1-2, 1998, : 967 - 972
  • [36] Temperature Controller Using the Takagi-Sugeno-Kang Fuzzy Inference System for an Industrial Heat Treatment Furnace
    Buele, Jorge
    Rios-Cando, Paulina
    Brito, Geovanni
    Moreno-P, Rodrigo
    Salazar, Franklin W.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT VI, 2020, 12254 : 351 - 366
  • [37] Takagi-Sugeno-Kang Transfer Learning Fuzzy Logic System for the Adaptive Recognition of Epileptic Electroencephalogram Signals
    Yang, Changjian
    Deng, Zhaohong
    Choi, Kup-Sze
    Wang, Shitong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2016, 24 (05) : 1079 - 1094
  • [38] Assessment of a Takagi-Sugeno-Kang fuzzy model assembly for examination of polyphasic loglinear allometry
    Echavarria-Heras, Hector A.
    Castro-Rodriguez, Juan R.
    Leal-Ramirez, Cecilia
    Villa-Diharce, Enrique
    PEERJ, 2020, 8
  • [39] Stability Analysis of Nonlinear Dynamic Systems by Nonlinear Takagi-Sugeno-Kang Fuzzy Systems
    Namadchian, Zahra
    Zare, Assef
    Namadchian, Ali
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2014, 136 (02):
  • [40] A wide interpretable Gaussian Takagi-Sugeno-Kang fuzzy classifier and its incremental learning
    Xie, Runshan
    Wang, Shitong
    KNOWLEDGE-BASED SYSTEMS, 2022, 241