Controlling plasmon-exciton interactions through photothermal reshaping

被引:16
|
作者
Hu, Aiqin [1 ,2 ]
Liu, Shuai [1 ,3 ]
Zhao, Jingyi [1 ]
Wen, Te [1 ]
Zhang, Weidong [1 ]
Gong, Qihuang [1 ,2 ]
Meng, Yongqiang [3 ]
Ye, Yu [1 ]
Lu, Guowei [1 ,2 ]
机构
[1] Peking Univ, Collaborat Innovat Ctr Quantum Matter, State Key Lab Mesoscop Phys, Nanooptoelect Frontier Ctr,Minist Educ,Sch Phys, Beijing 100871, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[3] Hebei Univ Sci & Technol, Sch Mat Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China
来源
OPTO-ELECTRONIC ADVANCES | 2020年 / 3卷 / 01期
基金
中国国家自然科学基金;
关键词
gold nanorod; MoS2; hybrid; scattering; photoluminescence; single nanoparticle; RESONANCE ENERGY-TRANSFER; ROOM-TEMPERATURE; PHOTOLUMINESCENCE; LIGHT; EMISSION; NANOPARTICLES; SCATTERING; NANOROD;
D O I
10.29026/oea.2020.190017
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigated the plasmon-exciton interactions in an individual gold nanorod (GNR) with monolayer MoS2 at room temperature with the single-particle spectroscopy technique. To control the plasmon-exciton interaction, we tuned the local surface plasmon resonance of an individual GNR in-situ by employing the photothermal reshaping effect. The scattering spectra of the GNR-MoS2 hybrids exhibited two dips at the frequencies of the A and B excitons of monolayer MoS2, which were caused by the plasmon-induced resonance energy transfer effect. The resonance energy transfer rate increased when the surface plasmon resonance of the nanorod matched well with the exciton transition energy. Also, we demonstrated that the plasmon-enhanced fluorescence process dominated the photoluminescence of the GNR-MoS2 hybrid. These results provide a flexible way to control the plasmon-exciton interaction in an all-solid-state operating system at room temperature.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [21] Plasmon-Exciton Coupling Using DNA Templates
    Roller, Eva-Maria
    Argyropoulos, Christos
    Hoegele, Alexander
    Liedl, Tim
    Pilo-Pais, Mauricio
    NANO LETTERS, 2016, 16 (09) : 5962 - 5966
  • [22] Plasmon-exciton coupling with colloidal metal nanoparticles
    Tao, Andrea
    Rodarte, Andrea
    Marin, Brandon
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [23] Plasmon-exciton coupling for nanophotonic sensing on chip
    Dong, Jun
    Cao, Yi
    Han, Qingyan
    Wang, Yongkai
    Qi, Minghan
    Zhang, Wenwen
    Qiao, Lin
    Qi, Jianxia
    Gao, Wei
    OPTICS EXPRESS, 2020, 28 (14): : 20817 - 20829
  • [24] Interaction and Coherence of a Plasmon-Exciton Polariton Condensate
    De Giorgi, Milena
    Ramezani, Mohammad
    Todisco, Francesco
    Halpin, Alexei
    Caputo, Davide
    Fieramosca, Antonio
    Gomez-Rivas, Jaime
    Sanvitto, Daniele
    ACS PHOTONICS, 2018, 5 (09): : 3666 - 3672
  • [25] Plasmon-exciton self-induced transparency
    A. A. Zabolotskii
    Journal of Experimental and Theoretical Physics, 2011, 112
  • [26] Manipulating plasmon-exciton interactions in the plasmonic waveguide structure based on the dispersion relations concept
    M. Mirahmadi
    T. Mahinroosta
    S. M. Hamidi
    Optical and Quantum Electronics, 2020, 52
  • [27] Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions
    Yang, Zhong-Jian
    Antosiewicz, Tomasz J.
    Shegai, Timur
    OPTICS EXPRESS, 2016, 24 (18): : 20373 - 20381
  • [28] Manipulating plasmon-exciton interactions in the plasmonic waveguide structure based on the dispersion relations concept
    Mirahmadi, M.
    Mahinroosta, T.
    Hamidi, S. M.
    OPTICAL AND QUANTUM ELECTRONICS, 2020, 52 (06)
  • [29] Induced Transparency in Plasmon-Exciton Nanostructures for Sensing Applications
    Krivenkov, Victor
    Goncharov, Semyon
    Nabiev, Igor
    Rakovich, Yury P.
    LASER & PHOTONICS REVIEWS, 2019, 13 (01)
  • [30] Ultrafast reversal of a Fano resonance in a plasmon-exciton system
    Shah, Raman A.
    Scherer, Norbert F.
    Pelton, Matthew
    Gray, Stephen K.
    PHYSICAL REVIEW B, 2013, 88 (07)