Fabrication, characterization, and stability of supported single-atom catalysts

被引:123
|
作者
Chen, Yaxin [1 ]
Huang, Zhiwei [1 ]
Ma, Zhen [1 ]
Chen, Jianmin [1 ]
Tang, Xingfu [1 ,2 ]
机构
[1] Fudan Univ, Dept Environm Sci & Engn, Inst Atmospher Sci, Shanghai Key Lab Atmospher Particle Pollut & Prev, Shanghai 200433, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Jiangsu, Peoples R China
关键词
WATER-GAS SHIFT; N-C CATALYST; ACTIVE-SITES; HETEROGENEOUS CATALYSTS; CERIA CATALYSTS; CARBON-MONOXIDE; FORMALDEHYDE OXIDATION; PREFERENTIAL OXIDATION; ELECTRON-MICROSCOPY; METAL PARTICLES;
D O I
10.1039/c7cy00723j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supported single-atom catalysts (SACs) and their catalysis have become a hot topic recently, because the dispersion of isolated metal atoms on support surfaces can maximize the atomic efficiency/economy of noble metals and the resulting SACs often possess unprecedented catalytic activity. More importantly, with the development of SACs, it is relatively easy for us to identify the nature of catalytically active sites on these catalysts and establish intrinsic reaction mechanisms. However, it is still a great challenge to develop thermally and chemically stable SACs by a relatively easy method, which is also the case for the characterization of these catalysts because that would need higher resolution and precision. In this minireview, we generalize the advantages of SACs, outline the recent progress of the fabrication, characterization, and stability of SACs, and propose that electronic metal-support interactions are key to the development of stable SACs with pronounced catalytic activity. Some directions for future research are briefly discussed.
引用
收藏
页码:4250 / 4258
页数:9
相关论文
共 50 条
  • [31] Applications of single-atom catalysts
    Qiaoqiao Zhang
    Jingqi Guan
    Nano Research, 2022, 15 : 38 - 70
  • [32] Applications of single-atom catalysts
    Zhang, Qiaoqiao
    Guan, Jingqi
    NANO RESEARCH, 2022, 15 (01) : 38 - 70
  • [33] Surprised by exceptional stability of confined single-atom cluster catalysts
    Aiqin Wang
    Tao Zhang
    ScienceChina(Materials), 2024, 67 (05) : 1676 - 1677
  • [34] Emerging carbon-supported single-atom catalysts for biomedical applications
    Liao, Guangfu
    Zhang, Li
    Li, Chunxue
    Liu, Shi-Yong
    Fang, Baizeng
    Yang, Huaming
    MATTER, 2022, 5 (10) : 3341 - 3374
  • [35] Phosphorene Supported Single-Atom Catalysts for CO Oxidation: A Computational Study
    Baskaran, Sambath
    Xu, Cong-Qiao
    Jiang, Ya-Fei
    Wang, Yang-Gang
    Li, Jun
    CHEMPHYSCHEM, 2021, 22 (04) : 378 - 385
  • [36] TiO2-Supported Single-Atom Catalysts for Photocatalytic Reactions
    Zhou, Xuemei
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (06)
  • [37] Resolving the Nanostructure of Carbon Nitride-Supported Single-Atom Catalysts
    Allasia, Nicolo
    Xu, Shuai
    Jafri, Sadaf Fatima
    Borfecchia, Elisa
    Cipriano, Luis A.
    Terraneo, Giancarlo
    Tosoni, Sergio
    Mino, Lorenzo
    Di Liberto, Giovanni
    Pacchioni, Gianfranco
    Vile, Gianvito
    SMALL, 2025,
  • [38] Ammonia electrosynthesis on carbon-supported metal single-atom catalysts
    Li, Mu-Lin
    Xie, Yi-Meng
    Song, Jingting
    Yang, Ji
    Dong, Jin-Chao
    Li, Jian-Feng
    CHINESE JOURNAL OF CATALYSIS, 2024, 60 : 42 - 67
  • [39] Catalytic propane dehydrogenation by anatase supported Ni single-atom catalysts
    Zhang, Qian
    Jiang, Xunzhu
    Su, Yang
    Zhao, Yang
    Qiao, Botao
    CHINESE JOURNAL OF CATALYSIS, 2024, 57 : 105 - 113
  • [40] Graphene-supported metal single-atom catalysts: a concise review
    Ren, Shuai
    Yu, Qi
    Yu, Xiaohu
    Rong, Ping
    Jiang, Liyun
    Jiang, Jianchao
    SCIENCE CHINA-MATERIALS, 2020, 63 (06) : 903 - 920