Metric dimension of Cayley digraphs of split metacyclic groups

被引:6
|
作者
Abas, Marcel [1 ]
Vetrik, Tomas [2 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Mat Sci & Technol Trnava, Inst Appl Informat Automat & Math, Trnava, Slovakia
[2] Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
基金
新加坡国家研究基金会;
关键词
Metric dimension; Directed Cayley graph; Metacyclic group; Networks;
D O I
10.1016/j.tcs.2019.11.025
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A directed Cayley graph Cay(Gamma, X) is specified by a group Gamma and an identity-free generating set X for this group. Vertices of Cay(Gamma, X) are elements of Gamma and there is a directed edge from a vertex u to a vertex v in Cay(Gamma, X) if and only if there is a generator x is an element of X such that ux = v. We study the metric dimension for the directed Cayley graphs Cay(Gamma(s) , {a,b}) of general split metacyclic groups, and present the exact values of the metric dimension for the special split metacyclic groups Gamma(s) = < a, b vertical bar a(n) = b(2s) =1, ba = a(-1)b >. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条