Finite-size effects on critical diffusion and relaxation towards metastable equilibrium

被引:20
|
作者
Koch, W [1 ]
Dohm, V [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Phys, D-52056 Aachen, Germany
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 02期
关键词
D O I
10.1103/PhysRevE.58.R1179
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an analytic study of finite-size effects on-critical diffusion above and below T-c of three-dimensional Ising-like systems whose order parameter is coupled to-a conserved density; We also calculate the finite-size relaxation time that governs the critical order-parameter relaxation towards a metastable equilibrium state below T-c. Two universal dynamic amplitude ratios at T-c are predicted and quantitative predictions of dynamic finite-size scaling functions are given that can be tested by Monte Carlo simulations.
引用
收藏
页码:R1179 / R1182
页数:4
相关论文
共 50 条
  • [31] Finite-size effects in microrheology
    Santamaria-Holek, I.
    Rubi, J. M.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (06):
  • [32] FINITE-SIZE EFFECTS IN A SANDPILE
    LIU, CH
    JAEGER, HM
    NAGEL, SR
    PHYSICAL REVIEW A, 1991, 43 (12): : 7091 - 7092
  • [33] FINITE-SIZE EFFECTS ON MULTIFRACTALS
    KAUFMANN, Z
    PHYSICAL REVIEW A, 1991, 44 (10): : 6923 - 6925
  • [34] Diffusion of Finite-Size Particles in Confined Geometries
    Bruna, Maria
    Chapman, S. Jonathan
    BULLETIN OF MATHEMATICAL BIOLOGY, 2014, 76 (04) : 947 - 982
  • [35] Finite-size effects in dynamics: Critical vs. coarsening phenomena
    Das, Subir K.
    Roy, Sutapa
    Majumder, Suman
    Ahmad, Shaista
    EPL, 2012, 97 (06)
  • [36] FINITE-SIZE EFFECTS ON CRITICAL WETTING IN 1+1 DIMENSIONS
    NIJMEIJER, MJP
    PHYSICA A, 1995, 214 (03): : 379 - 395
  • [37] Enhancement of the critical temperature in iron pnictide superconductors by finite-size effects
    Araujo, M. A. N.
    Garcia-Garcia, Antonio M.
    Sacramento, P. D.
    PHYSICAL REVIEW B, 2011, 84 (17):
  • [38] Diffusion of Finite-Size Particles in Confined Geometries
    Maria Bruna
    S. Jonathan Chapman
    Bulletin of Mathematical Biology, 2014, 76 : 947 - 982
  • [39] RANDOM-FIELD CRITICAL-BEHAVIOR - FINITE-SIZE EFFECTS
    SINGH, S
    BANAVAR, JR
    PHYSICAL REVIEW LETTERS, 1985, 55 (20) : 2220 - 2222
  • [40] Finite-size critical behavior in the Gibbs ensemble
    Bruce, AD
    PHYSICAL REVIEW E, 1997, 55 (03): : 2315 - 2320