A New Inertial Subgradient Extragradient method for Solving Quasimonotone Variational Inequalities

被引:0
|
作者
Rehman, Habib Ur [1 ]
Kumam, Wiyada [2 ]
Sombut, Kamonrat [3 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Rajamangala Univ Technol Thanyaburi, Appl Math Sci & Engn Res Unit AMSERU, Dept Math & Comp Sci, Fac Sci & Technol,Program Appl Stat, Thanyaburi 12110, Pathumthani, Thailand
[3] Rajamangala Univ Technol Thanyaburi, Appl Math Sci & Engn Res Unit AMSERU, Fac Sci & Technol, Dept Math & Comp Sci, Thanyaburi 12110, Pathumthani, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2021年 / 19卷 / 03期
关键词
Variational inequality problem; Subgradient extragradient method; Weak convergence result; Quasimonotone operator; Lipschitz continuity; PSEUDOMONOTONE EQUILIBRIUM PROBLEMS; WEAK-CONVERGENCE; FIXED-POINTS; REAL;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to study the numerical solution of variational inequalities involving quasimonotone operators in infinite-dimensional real Hilbert spaces. We prove that the iterative sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities converges weakly to the solution. The main advantage of the proposed iterative scheme is that it employs an inertial scheme and a monotone stepsize rule based on operator knowledge rather than a Lipschitz constant or another line search method. Numerical results show that the proposed algorithm is effective for solving quasimonotone variational inequalities.?
引用
收藏
页码:981 / 992
页数:12
相关论文
共 50 条