Global Dynamics of Delayed Sigmoid Beverton-Holt Equation

被引:3
|
作者
Khyat, Toufik [1 ]
Kulenovic, M. R. S. [1 ]
机构
[1] Univ Rhode Isl, Dept Math, Kingston, RI 02881 USA
关键词
BOUNDEDNESS; BIFURCATION; STABILITY; SYSTEMS;
D O I
10.1155/2020/1364282
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, certain dynamic scenarios for general competitive maps in the plane are presented and applied to some cases of second-order difference equation x(n+1) = f(x(n),x(n-1)), n=0,1, horizontal ellipsis , where f is decreasing in the variable xn and increasing in the variable xn-1. As a case study, we use the difference equation x(n+1) = (x(n-1)(2)/cx(n-1)(2)+dx(n)+f)), n=0,1, horizontal ellipsis , where the initial conditions x(-1), x(0)>= 0 and the parameters satisfy c,d,f>0. In this special case, we characterize completely the global dynamics of this equation by finding the basins of attraction of its equilibria and periodic solutions. We describe the global dynamics as a sequence of global transcritical or period-doubling bifurcations.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] A nonautonomous Beverton-Holt equation of higher order
    Bohner, Martin
    Dannan, Fozi M.
    Streipert, Sabrina
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 114 - 133
  • [12] Attenuation in the almost periodic Beverton-Holt equation
    Haskell, Cymra
    Sacker, Robert J.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (04) : 542 - 547
  • [13] Dynamics of a discontinuous discrete Beverton-Holt model
    Kocic, V. L.
    Kostrov, Y.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (5-6) : 859 - 874
  • [14] Note on the Almost Periodic Stochastic Beverton-Holt Equation
    Bezandry, Paul H.
    BRIDGING MATHEMATICS, STATISTICS, ENGINEERING AND TECHNOLOGY, 2012, 24 : 47 - 54
  • [15] Research on the Properties of Periodic Solutions of Beverton-Holt Equation
    Yingchao Hao
    Cuiping Li
    JournalofHarbinInstituteofTechnology(NewSeries), 2022, 29 (04) : 26 - 31
  • [16] Resonance and attenuation in the n-periodic Beverton-Holt equation
    Yang, Yi
    Sacker, Robert J.
    Haskell, Cymra
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (07) : 1174 - 1191
  • [17] BEVERTON-HOLT MODEL OF A COMMERCIAL FISHERY - OPTIMAL DYNAMICS
    CLARK, C
    EDWARDS, G
    FRIEDLAE.M
    JOURNAL OF THE FISHERIES RESEARCH BOARD OF CANADA, 1973, 30 (11): : 1629 - 1640
  • [18] The Beverton-Holt Equation from a Control Theory Point of View
    De La Sen, M.
    Alonso-Quesada, S.
    Bilbao-Guillerna, A.
    2008 2ND IEEE INTERNATIONAL CONFERENCE ON DIGITAL ECOSYSTEMS AND TECHNOLOGIES, 2008, : 361 - 368
  • [19] The stochastic Beverton-Holt equation and the M. Neubert conjecture
    Haskell C.
    Sacker R.J.
    Journal of Dynamics and Differential Equations, 2005, 17 (4) : 825 - 844
  • [20] Bifurcation dynamics in a stochastic population model with Beverton-Holt growth
    Ma, Yuanlin
    Wei, Yifan
    Liu, Tiantian
    Yu, Xingwang
    APPLIED MATHEMATICS LETTERS, 2024, 148