GLOBAL ATTRACTORS OF REACTION-DIFFUSION SYSTEMS MODELING FOOD CHAIN POPULATIONS WITH DELAYS

被引:10
|
作者
Feng, Wei [1 ]
Pao, C. V. [2 ]
Lu, Xin [1 ]
机构
[1] UNC Wilmington, Dept Math & Stat, Wilmington, NC 28403 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
Population dynamics; reaction diffusion systems; 4-species food chain; coexistence and permanence; positive steady state and global attractor; numerical simulations; NONLINEAR PARABOLIC-SYSTEMS; NUMERICAL-METHODS; EQUATIONS;
D O I
10.3934/cpaa.2011.10.1463
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a reaction-diffusion system modeling the population dynamics of a four-species food chain with time delays. Under Dirichlet and Neumann boundary conditions, we discuss the existence of a positive global attractor which demonstrates the presence of a positive steady state and the permanence effect in the ecological system. Sufficient conditions on the interaction rates are given to ensure the persistence of all species in the food chain. For the case of Neumann boundary condition, we further obtain the uniqueness of a positive steady state, and in such case the density functions converge uniformly to a constant solution. Numerical simulations of the food-chain models are also given to demonstrate and compare the asymptotic behavior of the time-dependent density functions.
引用
收藏
页码:1463 / 1478
页数:16
相关论文
共 50 条
  • [41] Attractors for Multivalued Impulsive Systems: Existence and Applications to Reaction-Diffusion System
    Dashkovskiy, S.
    Kapustian, O. A.
    Kapustyan, O., V
    Gorban, N., V
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [42] Uniform attractors of nonautonomous discrete reaction-diffusion systems in weighted spaces
    Wang, Bixiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (03): : 695 - 716
  • [43] Weak convergence of attractors of reaction-diffusion systems with randomly oscillating coefficients
    Bekmaganbetov, Kuanysh A.
    Chechkin, Gregory A.
    Chepyzhov, Vladimir V.
    APPLICABLE ANALYSIS, 2019, 98 (1-2) : 256 - 271
  • [44] Note on the stability of reaction-diffusion systems with delays by Lyapunov functional
    Yang, Hong
    Wei, Junjie
    APPLIED MATHEMATICS LETTERS, 2018, 83 : 151 - 155
  • [45] Persistence and extinction in two species reaction-diffusion systems with delays
    Ruan, SG
    Zhao, XQ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (01) : 71 - 92
  • [46] Global exponential stability of impulsive reaction-diffusion equation with variable delays
    Zhu, Wei
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 362 - 369
  • [47] Global attractivity for reaction-diffusion equations with periodic coefficients and time delays
    Ruiz-Herrera, Alfonso
    Touaoula, Tarik Mohammed
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [48] COMPACT ATTRACTORS FOR REACTION-DIFFUSION EQUATIONS IN RN
    FEIREISL, E
    LAURENCOT, P
    SIMONDON, F
    TOURE, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (02): : 147 - 151
  • [49] Uniform attractors for impulsive reaction-diffusion equations
    Yan, Xingjie
    Wu, Ying
    Zhong, Chengkui
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (09) : 2534 - 2543
  • [50] Attractors for reaction-diffusion equations in unbounded domains
    Wang, BX
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 128 (01) : 41 - 52