Centrally condensed turbulent cores: massive stars or fragmentation?

被引:62
|
作者
Dobbs, CL [1 ]
Bonnell, IA [1 ]
Clark, PC [1 ]
机构
[1] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
关键词
hydrodynamics; turbulence; stars : formation;
D O I
10.1111/j.1365-2966.2005.08941.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present numerical investigations into the formation of massive stars from turbulent cores of density structure rho infinity r(-1.5). The results of five hydrodynamical simulations are described, following the collapse of the core, fragmentation and the formation of small clusters of protostars. We generate two different initial turbulent velocity fields corresponding to power-law spectra P proportional to k(-4) and P proportional to k(-3.5), and we apply two different initial core radii. Calculations are included for both completely isothermal collapse, and a non-isothermal equation of state above a critical density (10(-14) g cm(-3)). Our calculations reveal the preference of fragmentation over monolithic star formation in turbulent cores. Fragmentation was prevalent in all the isothermal cases. Although disc fragmentation was largely suppressed in the non-isothermal runs due to the small dynamic range between the initial density and the critical density, our results show that some fragmentation still persisted. This is inconsistent with previous suggestions that turbulent cores result in the formation of a single massive star. We conclude that turbulence cannot be measured as an isotropic pressure term.
引用
收藏
页码:2 / 8
页数:7
相关论文
共 50 条
  • [31] Evidence for quark-matter cores in massive neutron stars
    Annala, Eemeli
    Gorda, Tyler
    Kurkela, Aleksi
    Nattila, Joonas
    Vuorinen, Aleksi
    NATURE PHYSICS, 2020, 16 (09) : 907 - +
  • [32] Quark-hybrid matter in the cores of massive neutron stars
    Orsaria, M.
    Rodrigues, H.
    Weber, F.
    Contrera, G. A.
    PHYSICAL REVIEW D, 2013, 87 (02):
  • [33] Evidence for quark-matter cores in massive neutron stars
    Eemeli Annala
    Tyler Gorda
    Aleksi Kurkela
    Joonas Nättilä
    Aleksi Vuorinen
    Nature Physics, 2020, 16 : 907 - 910
  • [34] The rotational shear in pre-collapse cores of massive stars
    Zilberman, Noa
    Gilkis, Avishai
    Soker, Noam
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (01) : 1194 - 1205
  • [35] Properties of quark-matter cores in massive hybrid stars
    Liu, He
    Zhang, Xiao-Min
    Chu, Peng-Cheng
    PHYSICAL REVIEW D, 2023, 107 (09)
  • [36] Turbulent properties of Helium convective shells of massive stars
    Ding, C. Y.
    Chen, Y. H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (04) : 6136 - 6142
  • [37] Massive-star Formation via the Collapse of Subvirial and Virialized Turbulent Massive Cores
    Rosen, Anna L.
    Li, Pak Shing
    Zhang, Qizhou
    Burkhart, Blakesley
    ASTROPHYSICAL JOURNAL, 2019, 887 (02):
  • [38] OBSERVATIONAL CONSEQUENCES OF TURBULENT PRESSURE IN THE ENVELOPES OF MASSIVE STARS
    Grassitelli, L.
    Fossati, L.
    Simon-Diaz, S.
    Langer, N.
    Castro, N.
    Sanyal, D.
    ASTROPHYSICAL JOURNAL LETTERS, 2015, 808 (01)
  • [39] FRAGMENTATION OF MASSIVE DENSE CORES DOWN TO ≲1000 AU: RELATION BETWEEN FRAGMENTATION AND DENSITY STRUCTURE
    Palau, Aina
    Estalella, Robert
    Girart, Josep M.
    Fuente, Asuncion
    Fontani, Francesco
    Commercon, Benoit
    Busquet, Gemma
    Bontemps, Sylvain
    Sanchez-Monge, Alvaro
    Zapata, Luis A.
    Zhang, Qizhou
    Hennebelle, Patrick
    di Francesco, James
    ASTROPHYSICAL JOURNAL, 2014, 785 (01):
  • [40] Radiation-hydrodynamic simulations of collapse and fragmentation in massive protostellar cores
    Krumholz, Mark R.
    Klein, Richard I.
    McKee, Christopher F.
    ASTROPHYSICAL JOURNAL, 2007, 656 (02): : 959 - 979