Predicting High-Resolution Turbulence Details in Space and Time

被引:9
|
作者
Bai, Kai [1 ,2 ,3 ]
Wang, Chunhao [1 ]
Desbrun, Mathieu [4 ,5 ,6 ]
Liu, Xiaopei [1 ]
机构
[1] ShanghaiTech Univ, Shanghai Engn Res Ctr Intelligent Vis & Imaging, Sch Informat Sci & Technol, Shanghai, Peoples R China
[2] SIMIT, Shanghai, Peoples R China
[3] UCAS, Shanghai, Peoples R China
[4] Inria Saclay, LIX DIX, Inst Polytech Paris, Palaiseau, France
[5] Ecole Polytech, Palaiseau, France
[6] CALTECH, Pasadena, CA 91125 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2021年 / 40卷 / 06期
基金
中国国家自然科学基金;
关键词
Fluid Simulation; Dictionary Learning; Neural Networks; Smoke Animation; CFD DATA-COMPRESSION; SIMULATION; FLOW;
D O I
10.1145/3478513.3480492
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Predicting the fine and intricate details of a turbulent flow field in both space and time from a coarse input remains a major challenge despite the availability of modern machine learning tools. In this paper, we present a simple and effective dictionary-based approach to spatio-temporal upsampling of fluid simulation. We demonstrate that our neural network approach can reproduce the visual complexity of turbulent flows from spatially and temporally coarse velocity fields even when using a generic training set. Moreover, since our method generates finer spatial and/or temporal details through embarrassingly-parallel upsampling of small local patches, it can efficiently predict high-resolution turbulence details across a variety of grid resolutions. As a consequence, our method offers a whole range of applications varying from fluid flow upsampling to fluid data compression. We demonstrate the efficiency and generalizability of our method for synthesizing turbulent flows on a series of complex examples, highlighting dramatically better results in spatio-temporal upsampling and flow data compression than existing methods as assessed by both qualitative and quantitative comparisons.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] High-resolution measurement of cloud microphysics and turbulence at a mountaintop station
    Siebert, H.
    Shaw, R. A.
    Ditas, J.
    Schmeissner, T.
    Malinowski, S. P.
    Bodenschatz, E.
    Xu, H.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (08) : 3219 - 3228
  • [42] High-Resolution Observations of Turbulence Distributions Across Tropopause Folds
    Soeder, Jens
    Zuelicke, Christoph
    Gerding, Michael
    Luebken, Franz-Josef
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (06)
  • [43] HIGH-RESOLUTION MST OBSERVATIONS OF TURBULENCE BY USING THE MU RADAR
    SATO, T
    TSUDA, T
    KATO, S
    MORIMOTO, S
    FUKAO, S
    KIMURA, I
    RADIO SCIENCE, 1985, 20 (06) : 1452 - 1460
  • [44] High-resolution imaging through horizontal-path turbulence
    Rhodes, William T.
    Pava, Diego
    Dalgleish, Fraser
    Nootz, Gero
    Silva, Sinjara Rishi
    TRIBUTE TO JOSEPH W. GOODMAN, 2011, 8122
  • [45] REDUCED WAVE SET METHOD FOR HIGH-RESOLUTION TURBULENCE SIMULATIONS
    VAZQUEZSEMADENI, E
    SCALO, J
    PHYSICAL REVIEW LETTERS, 1992, 68 (19) : 2921 - 2924
  • [46] HIGH-RESOLUTION VHF RADAR OBSERVATIONS OF TURBULENCE STRUCTURES IN THE MESOSPHERE
    ROTTGER, J
    RASTOGI, PK
    WOODMAN, RF
    GEOPHYSICAL RESEARCH LETTERS, 1979, 6 (07) : 617 - 620
  • [47] High-resolution speckle imaging through strong atmospheric turbulence
    Hope, Douglas A.
    Jefferies, Stuart M.
    Hart, Michael
    Nagy, James G.
    OPTICS EXPRESS, 2016, 24 (11): : 2116 - 2129
  • [48] Energy spectrum in high-resolution direct numerical simulations of turbulence
    Ishihara, Takashi
    Morishita, Koji
    Yokokawa, Mitsuo
    Uno, Atsuya
    Kaneda, Yukio
    PHYSICAL REVIEW FLUIDS, 2016, 1 (08):
  • [49] SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS
    Beresnyak, Andrey
    ASTROPHYSICAL JOURNAL LETTERS, 2014, 784 (02)
  • [50] High-resolution 3D simulations and jet turbulence
    Loken, C
    Burns, J
    Bryan, G
    Morman, M
    ENERGY TRANSPORT IN RADIO GALAXIES AND QUASARS, 1996, 100 : 267 - 272