The Blending of Poly(glycolic acid) with Polycaprolactone and Poly(l-lactide): Promising Combinations

被引:38
|
作者
Magazzini, Luca [1 ]
Grilli, Sara [1 ]
Fenni, Seif Eddine [1 ]
Donetti, Alessandro [2 ]
Cavallo, Dario [1 ]
Monticelli, Orietta [1 ]
机构
[1] Univ Genoa, Dipartimento Chim & Chim Ind, Via Dodecaneso 31, I-16146 Genoa, Italy
[2] Nat World SpA, Via Roma 8-2, I-16121 Genoa, Italy
关键词
PGA; PLA; PCL; blends; INFRARED-SPECTROSCOPY; MECHANICAL-PROPERTIES; DEUTERIUM-OXIDE; DRUG-RELEASE; PART I; DEGRADATION; POLYGLYCOLIDE; PLA; FIBERS; WATER;
D O I
10.3390/polym13162780
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(glycolic acid) (PGA) holds unique properties, including high gas barrier properties, high tensile strength, high resistance to common organic solvents, high heat distortion temperature, high stiffness, as well as fast biodegradability and compostability. Nevertheless, this polymer has not been exploited at a large scale due to its relatively high production cost. As such, the combination of PGA with other bioplastics on one hand could reduce the material final cost and on the other disclose new properties while maintaining its "green" features. With this in mind, in this work, PGA was combined with two of the most widely applied bioplastics, namely poly(l-lactide) (PLLA) and poycaprolactone (PCL), using the melt blending technique, which is an easily scalable method. FE-SEM measurements demonstrated the formation of PGA domains whose dimensions depended on the polymer matrix and which turned out to decrease by diminishing the PGA content in the mixture. Although there was scarce compatibility between the blend components, interestingly, PGA was found to affect both the thermal properties and the degradation behavior of the polymer matrices. In particular, concerning the latter property, the presence of PGA in the blends turned out to accelerate the hydrolysis process, particularly in the case of the PLLA-based systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Biodegradation of poly(l-lactide)
    Yutaka Tokiwa
    Amnat Jarerat
    Biotechnology Letters, 2004, 26 : 771 - 777
  • [22] Miscibility and crystallization of poly(L-lactide) poly(ethylene glycol) and poly(L-lactide)/poly(epsilon-caprolactone) blends
    Yang, JM
    Chen, HL
    You, JW
    Hwang, JC
    POLYMER JOURNAL, 1997, 29 (08) : 657 - 662
  • [23] Nanoencapsulation and Characterization of Zidovudine on Poly(L-lactide) and Poly(L-lactide)-Poly(ethylene glycol)-Blend Nanoparticles
    Mainardes, Rubiana Mara
    Daflon Gremiao, Maria Palmira
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (11) : 8513 - 8521
  • [24] Dielectric and conductivity properties of poly(L-lactide) and poly(L-lactide)/ionic liquid blends
    Pei Xu
    Hao Guan Gui
    Shan Zhong Yang
    Yun Sheng Ding
    Qian Hao
    Macromolecular Research, 2014, 22 : 304 - 309
  • [25] Dielectric and conductivity properties of poly(L-lactide) and poly(L-lactide)/ionic liquid blends
    Xu, Pei
    Gui, Hao Guan
    Yang, Shan Zhong
    Ding, Yun Sheng
    Hao, Qian
    MACROMOLECULAR RESEARCH, 2014, 22 (03) : 304 - 309
  • [26] Miscibility and properties of linear poly(L-lactide)/branched poly(L-lactide) copolyester blends
    Zuideveld, Mihaela
    Gottschalk, Carsten
    Kropfinger, Heidi
    Thomann, Ralf
    Rusu, Mihai
    Frey, Holger
    POLYMER, 2006, 47 (11) : 3740 - 3746
  • [27] Synthesis and properties of poly(L-lactide)-polyether-poly(L-lactide) triblock copolymers
    Kim, Hye Young
    Kim, Sung Chul
    MACROMOLECULAR RESEARCH, 2011, 19 (05) : 448 - 452
  • [28] The Study of Poly (L-lactide) Grafted Silica Nanoparticles on the Film Blowing of Poly (L-lactide)
    Wu, Feng
    Liu, Zhengying
    Yang, Mingbo
    PROCEEDINGS OF PPS-30: THE 30TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY, 2015, 1664
  • [29] Cold crystallization study of poly(β-hydroxybutyrate)/poly(L-lactide) blends and poly(ethylene oxide)/poly(β-hydroxybutyrate)/poly(L-lactide) blends
    Du, Jiang-Hua
    Yang, Qing-Fang
    Zhang, Nan-Nan
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2007, 23 (05): : 136 - 139
  • [30] Improvement in Thermal Stability of Flexible Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) Bioplastic by Blending with Native Cassava Starch
    Srisuwan, Yaowalak
    Baimark, Yodthong
    POLYMERS, 2022, 14 (15)