Groups whose proper Schur rings are commutative

被引:0
|
作者
Cho, Eun-Kyung [1 ]
机构
[1] Pusan Natl Univ, Coll Sci, Dept Math, 2,Busandaehak Ro 63beon Gil, Busan 46241, South Korea
关键词
Dedekind groups; group rings; Schur rings;
D O I
10.1142/S0219498818502067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Schur ring A is called Dedekind if the formal sum of every A-subgroup is in the center of A. In this paper, we find all finite groups G such that every proper Schur ring over G is Dedekind. As a corollary of our main theorem, we find all finite groups G such that every proper Schur ring over G is commutative.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] On Schur Rings over Infinite Groups
    Nicholas Bastian
    Jaden Brewer
    Stephen Humphries
    Andrew Misseldine
    Cache Thompson
    Algebras and Representation Theory, 2020, 23 : 493 - 511
  • [32] On multidimensional Schur rings of finite groups
    Chen, Gang
    Ren, Qing
    Ponomarenko, Ilia
    JOURNAL OF GROUP THEORY, 2024, 27 (01) : 61 - 88
  • [33] COMMUTATIVE RINGS WHOSE FACTORS HAVE ARTINIAN-RINGS OF QUOTIENTS
    BLAIR, WD
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 28 (01) : 9 - 12
  • [34] RINGS WHOSE PROPER FACTORS ARE RIGHT PERFECT
    Facchini, Alberto
    Parolin, Catia
    COLLOQUIUM MATHEMATICUM, 2011, 122 (02) : 191 - 202
  • [35] COMMUTATIVE RINGS WHOSE PRIME IDEALS ARE RADICALLY PERFECT
    Erdogdu, V.
    Harman, S.
    JOURNAL OF COMMUTATIVE ALGEBRA, 2013, 5 (04) : 527 - 544
  • [36] Commutative rings whose elements are a sum of a unit and idempotent
    Anderson, DD
    Camillo, VP
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (07) : 3327 - 3336
  • [37] Groups whose proper quotients are hypercentral
    Kurdachenko, LA
    Subbotin, IY
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1998, 65 : 224 - 237
  • [38] GROUPS WHOSE PROPER FACTORS ARE ABELIAN
    BAARTMANS, AH
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1976, 27 (1-2): : 33 - 36
  • [39] Groups whose proper subgroups are linear
    de Giovanni, F.
    Trombetti, M.
    Wehrfritz, B. A. F.
    JOURNAL OF ALGEBRA, 2022, 592 : 153 - 168
  • [40] SEPARABILITY AND AUTOMORPHISM GROUPS OF COMMUTATIVE RINGS
    KUHNER, J
    ARCHIV DER MATHEMATIK, 1977, 28 (03) : 238 - 252