Infrared Image Super-Resolution via Progressive Compact Distillation Network

被引:4
|
作者
Fan, Kefeng [1 ,2 ]
Hong, Kai [2 ]
Li, Fei [3 ]
机构
[1] China Elect Standardizat Inst, Informat Technol Res Ctr, Beijing 100007, Peoples R China
[2] Guilin Univ Elect Technol, Dept Elect Engn & Automat, Guilin 541004, Peoples R China
[3] PengCheng Lab, Shenzhen 518055, Peoples R China
关键词
infrared image super-resolution; information distillation; lightweight network; transfer learning;
D O I
10.3390/electronics10243107
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep convolutional neural networks are capable of achieving remarkable performance in single-image super-resolution (SISR). However, due to the weak availability of infrared images, heavy network architectures for insufficient infrared images are confronted by excessive parameters and computational complexity. To address these issues, we propose a lightweight progressive compact distillation network (PCDN) with a transfer learning strategy to achieve infrared image super-resolution reconstruction with a few samples. We design a progressive feature residual distillation (PFDB) block to efficiently refine hierarchical features, and parallel dilation convolutions are utilized to expand PFDB's receptive field, thereby maximizing the characterization power of marginal features and minimizing the network parameters. Moreover, the bil-global connection mechanism and the difference calculation algorithm between two adjacent PFDBs are proposed to accelerate the network convergence and extract the high-frequency information, respectively. Furthermore, we introduce transfer learning to fine-tune network weights with few-shot infrared images to obtain infrared image mapping information. Experimental results suggest the effectiveness and superiority of the proposed framework with low computational load in infrared image super-resolution. Notably, our PCDN outperforms existing methods on two public datasets for both x2 and x4 with parameters less than 240 k, proving its efficient and excellent reconstruction performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] SINGLE IMAGE SUPER-RESOLUTION VIA A PROGRESSIVE MIXTURE MODEL
    Su, Run
    Zhong, Baojiang
    Ji, Jiahuan
    Ma, Kai-Kuang
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 508 - 512
  • [22] PROGRESSIVE IMAGE SUPER-RESOLUTION VIA NEURAL DIFFERENTIAL EQUATION
    Park, Seobin
    Kim, Tae Hyun
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1521 - 1525
  • [23] A Compact Deep Neural Network for Single Image Super-Resolution
    Xu, Xiaoyu
    Qian, Jian
    Yu, Li
    Yu, Shengju
    HaoTao
    Zhu, Ran
    MULTIMEDIA MODELING (MMM 2020), PT II, 2020, 11962 : 148 - 160
  • [24] Image super-resolution via deep residual network
    Duan, Yakang
    Luo, Lin
    Zhang, Yu
    Zhu, Hongna
    ELEVENTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2019), 2019, 11209
  • [25] IMAGE SUPER-RESOLUTION VIA DEEP AGGREGATION NETWORK
    Wang, Xinya
    Ma, Jiayi
    Jiang, Junjun
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1747 - 1751
  • [26] Hyperspectral Image Super-Resolution via Intrafusion Network
    Hu, Jing
    Jia, Xiuping
    Li, Yunsong
    He, Gang
    Zhao, Minghua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (10): : 7459 - 7471
  • [27] Feature Distillation Interaction Weighting Network for Lightweight Image Super-resolution
    Gao, Guangwei
    Li, Wenjie
    Li, Juncheng
    Wu, Fei
    Lu, Huimin
    Yu, Yi
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 661 - 669
  • [28] Residual Dense Information Distillation Network for Single Image Super-Resolution
    Chen, Qiaosong
    Li, Jinxin
    Duan, Bolin
    Pu, Liu
    Deng, Xin
    Wang, Jin
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 500 - 505
  • [29] An efficient feature reuse distillation network for lightweight image super-resolution
    Liu, Chunying
    Gao, Guangwei
    Wu, Fei
    Guo, Zhenhua
    Yu, Yi
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249
  • [30] Scale-Aware Distillation Network for Lightweight Image Super-Resolution
    Lu, Haowei
    Lu, Yao
    Li, Gongping
    Sun, Yanbei
    Wang, Shunzhou
    Li, Yugang
    PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 128 - 139