Localized excitation and folded solitary wave for an extended (3+1)-dimensional B-type Kadomtsev-Petviashvili equation

被引:4
|
作者
Li, Lingfei [1 ]
Yan, Yongsheng [1 ]
Xie, Yingying [2 ]
机构
[1] Northwest Univ, Sch Econ & Management, Xian 710127, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
关键词
Kadomtsev-Petviashvili equation; Lattice structure; Folded wave; Dromion; Lump; Breather; VARIABLE SEPARATION APPROACH; DROMIONS;
D O I
10.1007/s11071-022-07559-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, we employ the multi-linear variable separation approach to derive variable separation solution for a new extended (3+1)-dimensional B-type Kadomtsev-Petviashvili equation. The solutions obtained here contain two totally separated arbitrary functions without any constraint. In addition, three kinds of localized excitations have been constructed, including dromion-lattice structure, lump-lattice structure and periodic lattice structure. By adjusting the velocities to be equal or unequal, the chase-collision and interaction phenomena have been observed. Moreover, folded solitary waves such as worm shape, worm-dromion shape, worm-solitoff shape, fin shape and octopus shape foldons are derived by introducing multi-valued function. Lastly, we discuss the interaction behavior of two- and three-foldon and construct M x N folded wave.
引用
收藏
页码:2013 / 2027
页数:15
相关论文
共 50 条
  • [31] Lump collision dynamics in the generalized (3+1)-dimensional variable coefficient B-type Kadomtsev-Petviashvili equation
    Siddique, Imran
    Zulqarnain, Rana Muhammad
    Akbar, M. Ali
    Ali, Sabila
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [32] Two kinds of breather solitary wave and rogue wave solutions for the (3+1)-dimensional Kadomtsev-Petviashvili equation
    Xu, Zhenhui
    Chen, Hanlin
    Dai, Zhengde
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (02): : 521 - 527
  • [33] Painleve analysis, multi-kinks and hybrid nonlinear waves for an extended (3+1)-dimensional B-type Kadomtsev-Petviashvili equation
    Ilyas, Muhammad Ahtisham
    Javid, Ahmad
    Wazwaz, Abdul-Majid
    PHYSICA SCRIPTA, 2023, 98 (09)
  • [34] Exact travelling wave solutions to the (3+1)-dimensional Kadomtsev-Petviashvili equation
    Peng, Y.-Z.
    Krishnan, E.V.
    Acta Phys Pol A, 3 (421-428):
  • [35] Lump wave-soliton and rogue wave-soliton interactions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in a fluid
    Hu, Cong-Cong
    Tian, Bo
    Wu, Xiao-Yu
    Du, Zhong
    Zhao, Xue-Hui
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (05) : 2395 - 2403
  • [36] Exact travelling wave solutions to the (3+1)-dimensional Kadomtsev-Petviashvili equation
    Peng, YZ
    Krishnan, EV
    ACTA PHYSICA POLONICA A, 2005, 108 (03) : 421 - 428
  • [37] Lie Symmetry Analysis, Traveling Wave Solutions, and Conservation Laws to the (3+1)-Dimensional Generalized B-Type Kadomtsev-Petviashvili Equation
    Yang, Huizhang
    Liu, Wei
    Zhao, Yunmei
    COMPLEXITY, 2020, 2020
  • [38] Pfaffian, soliton, hybrid and periodic-wave solutions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid mechanics
    Liu, Fei-Yan
    Gao, Yi-Tian
    Yu, Xin
    Li, Liu-Qing
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (01):
  • [39] Bilinear formalism, lump solution, lumpoff and instanton/rogue wave solution of a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation
    Mao, Jin-Jin
    Tian, Shou-Fu
    Zou, Li
    Zhang, Tian-Tian
    Yan, Xing-Jie
    NONLINEAR DYNAMICS, 2019, 95 (04) : 3005 - 3017
  • [40] Quasiperiodic waves, solitary waves and asymptotic properties for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation
    Wang, Xiu-Bin
    Tian, Shou-Fu
    Feng, Lian-Li
    Yan, Hui
    Zhang, Tian-Tian
    NONLINEAR DYNAMICS, 2017, 88 (03) : 2265 - 2279