Analytic-non-integrability of an integrable analytic Hamiltonian system

被引:6
|
作者
Gorni, G
Zampieri, G
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, UD, Italy
[2] Univ Turin, Dipartimento Matemat, I-10123 Turin, TO, Italy
关键词
Liouville integrability; real analytic non-integrability;
D O I
10.1016/j.difgeo.2005.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the polynomial Hamiltonian H(q(1), q(2), p(1), p(2)) := (q(2)(2) + (q(1)(2) + q(2)(2))(2))p(1) -q(1)q(2)p(2) and we prove that the associated Hamiltonian system is Liouville-C-infinity-integrable, but fails to be real-analytically integrable in any neighbourhood of an equilibrium point. The proof only uses power series expansions, and is elementary. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 50 条
  • [31] Analytic integrability of certain resonant saddle
    Christopher, Colin
    Gine, Jaume
    CHAOS SOLITONS & FRACTALS, 2021, 146
  • [32] Analytic integrability for strings on η and λ deformed backgrounds
    Roychowdhury, Dibakar
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (10):
  • [33] Analytic integrability for strings on η and λ deformed backgrounds
    Dibakar Roychowdhury
    Journal of High Energy Physics, 2017
  • [34] Local analytic integrability for nilpotent centers
    Chavarriga, J
    Giacomin, H
    Giné, J
    Llibre, J
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 417 - 428
  • [35] Geometry and real-analytic integrability
    Butler, L. T.
    REGULAR & CHAOTIC DYNAMICS, 2006, 11 (03): : 363 - 369
  • [36] Analytic integrability around a nilpotent singularity
    Algaba, Antonio
    Garcia, Cristobal
    Gine, Jaume
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (01) : 443 - 467
  • [37] ANALYTIC INTEGRABILITY AROUND A NILPOTENT SINGULARITY: THE NON-GENERIC CASE
    Algaba, Antonio
    Diaz, Maria
    Garcia, Cristobal
    Gine, Jaume
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) : 407 - 423
  • [38] The Michelson system is neither global analytic, nor Darboux integrable
    Llibre, Jaume
    Valls, Claudia
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (08) : 414 - 419
  • [39] ON THE QUANTAL INTEGRABILITY OF CLASSICALLY INTEGRABLE HAMILTONIAN-SYSTEMS
    HIETARINTA, J
    DORIZZI, B
    GRAMMATICOS, B
    RAMANI, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1983, 297 (11): : 791 - 794
  • [40] On the Non-Integrability of the Stark–Zeeman Hamiltonian System
    S. Ferrer
    F. Mondéjar
    Communications in Mathematical Physics, 1999, 208 : 55 - 63