Unidimensional and Multidimensional Methods for Recurrence Quantification Analysis with crqa

被引:0
|
作者
Coco, Moreno, I [1 ]
Monster, Dan [2 ]
Leonardi, Giuseppe [3 ]
Dale, Rick [4 ]
Wallot, Sebastian [5 ]
机构
[1] Univ East London, Sch Psychol, London E15 4LZ, England
[2] Aarhus Univ, Sch Business & Social Sci, DK-8210 Aarhus V, Denmark
[3] Univ Econ & Human Sci Warsaw, Inst Psychol, PL-01043 Warsaw, Poland
[4] Univ Calif Los Angeles, Dept Commun, Los Angeles, CA 90005 USA
[5] Max Planck Inst Empir Aesthet, Dept Language & Literature, GR-60322 Frankfurt, Germany
来源
R JOURNAL | 2021年 / 13卷 / 01期
关键词
CROSS-RECURRENCE; HEART-RATE; DISCOURSE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recurrence quantification analysis is a widely used method for characterizing patterns in time series. This article presents a comprehensive survey for conducting a wide range of recurrence-based analyses to quantify the dynamical structure of single and multivariate time series and capture coupling properties underlying leader-follower relationships. The basics of recurrence quantification analysis (RQA) and all its variants are formally introduced step-by-step from the simplest auto-recurrence to the most advanced multivariate case. Importantly, we show how such RQA methods can be deployed under a single computational framework in R using a substantially renewed version of our crqa 2.0 package. This package includes implementations of several recent advances in recurrence-based analysis, among them applications to multivariate data and improved entropy calculations for categorical data. We show concrete applications of our package to example data, together with a detailed description of its functions and some guidelines on their usage.Y
引用
收藏
页码:145 / 163
页数:19
相关论文
共 50 条
  • [41] Fechnerian metrics in unidimensional and multidimensional stimulus spaces
    Ehtibar N. Dzhafarov
    Hans Colonius
    Psychonomic Bulletin & Review, 1999, 6 : 239 - 268
  • [42] Recurrence quantification analysis of chimera states
    Santos, M. S.
    Szezech, J. D., Jr.
    Batista, A. M.
    Caldas, I. L.
    Viana, R. L.
    Lopes, S. R.
    PHYSICS LETTERS A, 2015, 379 (37) : 2188 - 2192
  • [43] Recurrence quantification analysis of eye movements
    Anderson, Nicola C.
    Bischof, Walter F.
    Laidlaw, Kaitlin E. W.
    Risko, Evan F.
    Kingstone, Alan
    BEHAVIOR RESEARCH METHODS, 2013, 45 (03) : 842 - 856
  • [44] Recurrence quantification analysis of postural fluctuations
    Riley, MA
    Balasubramaniam, R
    Turvey, MT
    GAIT & POSTURE, 1999, 9 (01) : 65 - 78
  • [45] ' Recurrence quantification analysis of business cycles
    Orlando, Giuseppe
    Zimatore, Giovanna
    CHAOS SOLITONS & FRACTALS, 2018, 110 : 82 - 94
  • [46] Recurrence quantification analysis of eye movements
    Nicola C. Anderson
    Walter F. Bischof
    Kaitlin E. W. Laidlaw
    Evan F. Risko
    Alan Kingstone
    Behavior Research Methods, 2013, 45 : 842 - 856
  • [47] Quantification analysis of fuzzy recurrence plots
    Pham, Tuan D.
    EPL, 2022, 137 (06)
  • [48] Recurrence quantification analysis in molecular dynamics
    Manetti, C
    Ceruso, MA
    Giuliani, A
    Webber, CL
    Zbilut, JP
    TEMPOS IN SCIENCE AND NATURE: STRUCTURES, RELATIONS, AND COMPLEXITY, 1999, 879 : 258 - 266
  • [49] Simpler methods do it better: Success of Recurrence Quantification Analysis as a general purpose data analysis tool
    Webber, Charles L., Jr.
    Marwan, Norbert
    Facchini, Angelo
    Giuliani, Alessandro
    PHYSICS LETTERS A, 2009, 373 (41) : 3753 - 3756
  • [50] STRONG LAWS FOR RECURRENCE QUANTIFICATION ANALYSIS
    Grendar, M.
    Majerova, J.
    Spitalsky, V.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (08):