Role of Thin Film Adhesion on Capillary Peeling

被引:11
|
作者
Ma, Jingcheng [2 ]
Kim, Jin Myung [1 ]
Hoque, Muhammad Jahidul [2 ]
Thompson, Kamila J. [3 ]
Nam, SungWoo [4 ,5 ]
Cahill, David G. [4 ,5 ]
Miljkovic, Nenad [2 ,5 ,6 ,7 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[3] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[4] Univ Illinois, Dept Mech Sci & Engn, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[5] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[7] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 8190395, Japan
关键词
thin film; peeling; capillary; adhesion; surface energy; 2D materials; SURFACE-ENERGY; TENSION; LAYER;
D O I
10.1021/acs.nanolett.1c03494
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The capillary force can peel off a substrate-attached film if the adhesion energy (G(w)) is low. Capillary peeling has been used as a convenient, rapid, and nondestructive method for fabricating free-standing thin films. However, the critical value of G(w), which leads to the transition between peeling and sticking, remains largely unknown. As a result, capillary peeling remains empirical and applicable to a limited set of materials. Here, we investigate the critical value of G(w) and experimentally show the critical adhesion (G(w,c)) to scale with the water-film interfacial energy (approximate to 0.7 gamma(fw)), which corresponds well with our theoretical prediction of (Gw, c) =gamma(fw). Based on the critical adhesion, we propose quantitative thermodynamic guidelines for designing thin film interfaces that enable successful capillary peeling. The outcomes of this work present a powerful technique for thin film transfer and advanced nanofabrication in flexible photovoltaics, battery materials, biosensing, translational medicine, and stretchable bioelectronics.
引用
收藏
页码:9983 / 9989
页数:7
相关论文
共 50 条
  • [31] Some thermodynamic effects in thin film adhesion
    Chornous, A. M.
    Kirik, G., V
    Protsertko, I. Yu
    Stadnik, A. D.
    FUNCTIONAL MATERIALS, 2005, 12 (01): : 51 - 54
  • [32] QUANTITATIVE MEASUREMENT OF THIN FILM ADHESION FORCE
    Tsai, Li-Chih
    Rezaee, Maysam
    Haider, Muhammad Istiaque
    Yazdi, Armin
    Salowitz, Nathan P.
    PREOCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2019, 2020,
  • [33] Testing thin film adhesion strength acoustically
    Madanshetty, SI
    Wanklyn, KM
    Ji, H
    ACOUSTICS RESEARCH LETTERS ONLINE-ARLO, 2005, 6 (01): : 58 - 62
  • [34] CHARGE EFFECTS IN THIN-FILM ADHESION
    VONHARRACH, HG
    CHAPMAN, BN
    THIN SOLID FILMS, 1972, 13 (01) : 157 - +
  • [35] Recent developments in thin film adhesion measurement
    Cordill, MJ
    Bahr, DF
    Moody, NR
    Gerberich, WW
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2004, 4 (02) : 163 - 168
  • [36] ADHESION ENHANCEMENT OF THIN METAL FILM.
    Anon
    IBM technical disclosure bulletin, 1986, 29 (04): : 1854 - 1856
  • [37] Adhesion and thin-film module reliability
    McMahon, T. J.
    Jorgensen, G. J.
    CONFERENCE RECORD OF THE 2006 IEEE 4TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS 1 AND 2, 2006, : 2062 - +
  • [38] DEVICE FOR MEASURING ADHESION OF THIN-FILM
    LABUNOV, VA
    LESHCHENKO, IN
    UVAROV, AR
    INDUSTRIAL LABORATORY, 1979, 45 (04): : 481 - 482
  • [39] VARIATIONAL PRINCIPLE OF THIN-FILM ADHESION
    JEONG, HS
    WHITE, RC
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1993, 11 (04): : 1373 - 1376
  • [40] Adhesion in thin film structures for emerging technologies
    Dauskardt, RH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1111 - U1111