Superconvergence property of an over-penalized discontinuous Galerkin finite element gradient recovery method
被引:4
|
作者:
Song, Lunji
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
Lanzhou Univ, Key Lab Appl Math & Complex Syst Gansu Prov, Lanzhou 730000, Peoples R ChinaLanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
Song, Lunji
[1
,2
]
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USALanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
Zhang, Zhimin
[3
,4
]
机构:
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Key Lab Appl Math & Complex Syst Gansu Prov, Lanzhou 730000, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
A polynomial preserving recovery method is introduced for over-penalized symmetric interior penalty discontinuous Galerkin solutions to a quasi-linear elliptic problem. As a post-processing method, the polynomial preserving recovery is superconvergent for the linear and quadratic elements under specified meshes in the regular and chevron patterns, as well as general meshes satisfying Condition (epsilon, sigma). By means of the averaging technique, we prove the polynomial preserving recovery method for averaged solutions is superconvergent, satisfying similar estimates as those for conforming finite element methods. We deduce superconvergence of the recovered gradient directly from discontinuous solutions and naturally construct an a posteriori error estimator. Consequently, the a posteriori error estimator based on the recovered gradient is asymptotically exact. Extensive numerical results consistent with our analysis are presented. (C) 2015 Elsevier Inc. All rights reserved.
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Guo, Hailong
Yang, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Yang, Xu
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA