Results of 20 Machine-Learning Techniques to Identify Sepsis Patients in the Emergency Department

被引:1
|
作者
Sherwin, R. [1 ]
Ying, H. [1 ]
机构
[1] Wayne State Univ, Detroit, MI USA
关键词
D O I
10.1016/j.annemergmed.2018.08.019
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
14
引用
收藏
页码:S6 / S7
页数:2
相关论文
共 50 条
  • [41] Machine-learning techniques for macromolecular crystallization data
    Gopalakrishnan, V
    Livingston, G
    Hennessy, D
    Buchanan, B
    Rosenberg, JM
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 : 1705 - 1716
  • [42] The sensitivity of qSOFA calculated at triage and during emergency department treatment to rapidly identify sepsis patients
    Perman, Sarah M.
    Mikkelsen, Mark E.
    Goyal, Munish
    Ginde, Adit
    Bhardwaj, Abhishek
    Drumheller, Byron
    Sante, S. Cham
    Agarwal, Anish K.
    Gaieski, David F.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [43] Prospective evaluation of an automated method to identify patients with severe sepsis or septic shock in the emergency department
    Brown S.M.
    Jones J.
    Kuttler K.G.
    Keddington R.K.
    Allen T.L.
    Haug P.
    BMC Emergency Medicine, 16 (1)
  • [44] The sensitivity of qSOFA calculated at triage and during emergency department treatment to rapidly identify sepsis patients
    Sarah M. Perman
    Mark E. Mikkelsen
    Munish Goyal
    Adit Ginde
    Abhishek Bhardwaj
    Byron Drumheller
    S. Cham Sante
    Anish K. Agarwal
    David F. Gaieski
    Scientific Reports, 10
  • [45] Mortality prediction of patients with sepsis in the emergency department using machine learning models: a retrospective cohort study according to the Sepsis-3 definitions
    Jeon, Eun-Tae
    Song, Juhyun
    Park, Dae Won
    Lee, Ki-Sun
    Ahn, Sejoong
    Kim, Joo Yeong
    Park, Jong-Hak
    Moon, Sungwoo
    Cho, Han-Jin
    SIGNA VITAE, 2023, 19 (05) : 112 - 124
  • [46] Machine learning–based triage to identify low-severity patients with a short discharge length of stay in emergency department
    Yu-Hsin Chang
    Hong-Mo Shih
    Jia-En Wu
    Fen-Wei Huang
    Wei-Kung Chen
    Dar-Min Chen
    Yu-Ting Chung
    Charles C. N. Wang
    BMC Emergency Medicine, 22
  • [47] Interpretable machine learning for predicting sepsis risk in emergency triage patients
    Liu, Zheng
    Shu, Wenqi
    Li, Teng
    Zhang, Xuan
    Chong, Wei
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [48] A claims-based, machine-learning algorithm to identify patients with pulmonary arterial hypertension
    Hyde, Bethany
    Paoli, Carly J.
    Panjabi, Sumeet
    Bettencourt, Katherine C.
    Lynum, Karimah S. Bell S.
    Selej, Mona
    PULMONARY CIRCULATION, 2023, 13 (02)
  • [49] A machine-learning algorithm using claims data to identify patients with homozygous familial hypercholesterolemia
    Gu, Jing
    Epland, Matthew
    Ma, Xinshuo
    Park, Jina
    Sanchez, Robert J.
    Li, Ying
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [50] FAILURE TO RECOGNISE PATIENTS WITH SEPSIS IN THE EMERGENCY DEPARTMENT
    Jansen, L.
    Bosch, M.
    Kuiper, M. A.
    INTENSIVE CARE MEDICINE, 2010, 36 : S364 - S364