Hardy inequalities for Robin Laplacians

被引:17
|
作者
Kovarik, Hynek [1 ]
Laptev, Ari [2 ]
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[2] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
关键词
Robin Laplacian; Hardy inequality; GEOMETRICAL VERSION;
D O I
10.1016/j.jfa.2012.03.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish a Hardy inequality for Laplace operators with Robin boundary conditions. For convex domains, in particular, we show explicitly how the corresponding Hardy weight depends on the coefficient of the Robin boundary conditions. We also study several extensions to non-convex and unbounded domains. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4972 / 4985
页数:14
相关论文
共 50 条
  • [31] Cheeger inequalities for unbounded graph Laplacians
    Bauer, Frank
    Keller, Matthias
    Wojciechowski, Radoslaw K.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (02) : 259 - 271
  • [32] Hook immanantal inequalities for Laplacians of trees
    Chan, Onn
    Lam, T.K.
    Linear Algebra and Its Applications, 1997, 261 (1-3): : 23 - 47
  • [33] Weighted graph laplacians and isoperimetric inequalities
    Chung, FRK
    Oden, K
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 192 (02) : 257 - 273
  • [34] Eigenvalue Counting Function for Robin Laplacians on Conical Domains
    Bruneau, Vincent
    Pankrashkin, Konstantin
    Popoff, Nicolas
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) : 123 - 151
  • [35] On the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians
    J. B. Kennedy
    Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 781 - 792
  • [36] On the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians
    Kennedy, J. B.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (05): : 781 - 792
  • [37] Hook immanantal inequalities for Laplacians of trees
    Chan, O
    Lam, TK
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 261 : 23 - 47
  • [38] Eigenvalue Counting Function for Robin Laplacians on Conical Domains
    Vincent Bruneau
    Konstantin Pankrashkin
    Nicolas Popoff
    The Journal of Geometric Analysis, 2018, 28 : 123 - 151
  • [39] Improved Hardy inequalities and weighted Hardy type inequalities with spherical derivatives
    Nguyen Tuan Duy
    Nguyen Lam
    Le Long Phi
    Revista Matemática Complutense, 2022, 35 : 1 - 23
  • [40] Improved Hardy inequalities and weighted Hardy type inequalities with spherical derivatives
    Nguyen Tuan Duy
    Nguyen Lam
    Le Long Phi
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (01): : 1 - 23