Kramers' escape problem for fractional Klein-Kramers equation with tempered α-stable waiting times

被引:21
|
作者
Gajda, Janusz [1 ]
Magdziarz, Marcin [1 ]
机构
[1] Wroclaw Univ Technol, Hugo Steinhaus Ctr, Inst Math & Comp Sci, PL-50370 Wroclaw, Poland
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 02期
关键词
ANOMALOUS DIFFUSION; CONVERGENCE; DYNAMICS;
D O I
10.1103/PhysRevE.84.021137
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper we extend the subdiffusive Klein-Kramers model, in which the waiting times are modeled by the alpha-stable laws, to the case of waiting times belonging to the class of tempered alpha-stable distributions. We introduce a generalized version of the Klein-Kramers equation, in which the fractional Riemman-Liouville derivative is replaced with a more general integro-differential operator. This allows a transition from the initial subdiffusive character of motion to the standard diffusion for long times to be modeled. Taking advantage of the corresponding Langevin equation, we study some properties of the tempered dynamics, in particular, we approximate solutions of the tempered Klein-Kramers equation via Monte Carlo methods. Also, we study the distribution of the escape time from the potential well and compare it to the classical results in the Kramers escape theory. Finally, we derive the analytical formula for the first-passage-time distribution for the case of free particles. We show that the well-known Sparre Andersen scaling holds also for the tempered subdiffusion.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Kramers' escape rate problem within a non-Markovian description
    Schueller, Benjamin
    Meistrenko, Alex
    van Hees, Hendrik
    Xu, Zhe
    Greiner, Carsten
    ANNALS OF PHYSICS, 2020, 412
  • [42] Moving boundary truncated grid method: Application to activated barrier crossing with the Klein-Kramers and Boltzmann-BGK models
    Li, Ming-Yu
    Lu, Chun-Yaung
    Chou, Chia-Chun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 661
  • [43] Geometric Brownian Motion with Tempered Stable Waiting Times
    Janusz Gajda
    Agnieszka Wyłomańska
    Journal of Statistical Physics, 2012, 148 : 296 - 305
  • [44] Geometric Brownian Motion with Tempered Stable Waiting Times
    Gajda, Janusz
    Wylomanska, Agnieszka
    JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (02) : 296 - 305
  • [45] The Kramers problem revisited: A minimal path approximation to the Langevin equation
    Chen, LY
    MODERN PHYSICS LETTERS B, 2000, 14 (27-28): : 975 - 982
  • [46] An Analytical Study of Fractional Klein–Kramers Approximations for Describing Anomalous Diffusion of Energetic Particles
    Ashraf M. Tawfik
    Horst Fichtner
    A. Elhanbaly
    Reinhard Schlickeiser
    Journal of Statistical Physics, 2019, 174 : 830 - 845
  • [47] Regularity of the spatially homogenous fractional Kramers-Fokker-Planck equation
    Xu, Chao-Jiang
    Xu, Yan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (01)
  • [48] THE KINETIC BOUNDARY-LAYER FOR THE KLEIN- KRAMERS EQUATION - A NEW NUMERICAL APPROACH
    SELINGER, JV
    TITULAER, UM
    JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (3-4) : 293 - 319
  • [49] On an inverse problem for a tempered fractional diffusion equation
    Nguyen, Anh Tuan
    Tuan, Nguyen Hoang
    Dai, Le Xuan
    Can, Nguyen Huu
    FILOMAT, 2024, 38 (19) : 6809 - 6827
  • [50] EXACT SOLUTION TO KRAMERS PROBLEM OF THE ESCAPE ACROSS A POTENTIAL BARRIER IN THE LIMIT OF SMALL RESISTANCE
    LAVENDA, BH
    LETTERE AL NUOVO CIMENTO, 1983, 37 (06): : 200 - 204