Quantum derivatives and the Schrodinger equation

被引:30
|
作者
Ben Adda, F
Cresson, J
机构
[1] King Fahd Univ Petr & Minerals, Hail Community Coll, Dept Math Sci, Hail 72000, Saudi Arabia
[2] Univ Franche Comte, CNRS, UMR 6623, F-25030 Besancon, France
关键词
D O I
10.1016/S0960-0779(03)00339-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a scale derivative for non-differentiable functions. It is constructed via quantum derivatives which take into account non-differentiability and the existence of a minimal resolution for mean representation. This justify heuristic computations made by Nottale in scale-relativity. In particular, the Schrodinger equation is derived via the scale-relativity principle and Newton's fundamental equation of dynamics. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1323 / 1334
页数:12
相关论文
共 50 条
  • [31] QUANTUM DEFORMATIONS OF THE DISCRETE NONLINEAR SCHRODINGER-EQUATION
    SALERNO, M
    PHYSICAL REVIEW A, 1992, 46 (11): : 6856 - 6859
  • [32] Comment on "Fractional quantum mechanics" and "Fractional Schrodinger equation"
    Wei, Yuchuan
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [33] From Schrodinger's equation to the quantum search algorithm
    Grover, LK
    PRAMANA-JOURNAL OF PHYSICS, 2001, 56 (2-3): : 333 - 348
  • [34] QUANTUM NONLINEAR SCHRODINGER-EQUATION - 2 SOLUTIONS
    GUTKIN, E
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 167 (1-2): : 1 - 131
  • [35] A Solution of Time Dependent Schrodinger Equation by Quantum Walk
    Sekino, Hideo
    Kawahata, Masayuki
    Hamada, Shinji
    ASIA-PACIFIC INTERDISCIPLINARY RESEARCH CONFERENCE 2011 (AP-IRC 2011), 2012, 352
  • [36] Quantum annealing and the Schrodinger-Langevin-Kostin equation
    de Falco, Diego
    Tamascelli, Dario
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [37] From Schrodinger's equation to the quantum search algorithm
    Grover, LK
    AMERICAN JOURNAL OF PHYSICS, 2001, 69 (07) : 769 - 777
  • [38] Schrodinger-equation formalism for a dissipative quantum system
    Anisimovas, E.
    Matulis, A.
    PHYSICAL REVIEW A, 2007, 75 (02):
  • [39] Nonlinear Schrodinger wave equation with linear quantum behavior
    Richardson, Chris D.
    Schlagheck, Peter
    Martin, John
    Vandewalle, Nicolas
    Bastin, Thierry
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [40] THE QUANTUM INVERSE METHOD AND THE NONLINEAR SCHRODINGER-EQUATION
    DAVIES, B
    KIEU, TD
    INVERSE PROBLEMS, 1986, 2 (02) : 141 - 159