Observability of Fractional Linear Systems with Singularity
被引:0
|
作者:
Xu, Dengguo
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
Chuxiong Normal Univ, Sch Math & Stat, Chuxiong 675000, Peoples R ChinaBeijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
Xu, Dengguo
[1
,2
]
Wang, Qinglin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
Wang, Qinglin
[1
]
Li, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
Li, Yuan
[1
]
机构:
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Chuxiong Normal Univ, Sch Math & Stat, Chuxiong 675000, Peoples R China
Fractional linear systems;
Singularity;
Observability;
Gramian matrix;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
In this paper, the state observability of fractional linear systems with singularity is considered. State response and output response of the systems are obtained by using Laplace transformation and convolution formula. Based on the output response of the subsystems, observability Grammian matrices of slow subsystem and the fast subsystem are presented for the first time. We demonstrate that the sufficient and necessary conditions for observability of the subsystems are reversibility of the observability Grammian matrix. The results obtained will be useful in the analysis and synthesis of fractional descriptor systems.
机构:
Univ New S Wales, Australian Def Force Acad, Sch Informat Technol & Elect Engn, Canberra, ACT 2600, AustraliaUniv New S Wales, Australian Def Force Acad, Sch Informat Technol & Elect Engn, Canberra, ACT 2600, Australia