Experiments with hierarchical text classification

被引:0
|
作者
Granitzer, M [1 ]
Auer, P [1 ]
机构
[1] Know Ctr, Div Knowledge Discovery, A-8010 Graz, Austria
关键词
machine learning; supervised learning; hierarchical text classification; boosting; ranking performance;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper applies Boosting to hierarchical text classification where the hierarchical structure is given as directed acyclic graph and compares the results to Support Vector Machines. Hierarchical classification is performed top-down and in each node a flat classifier decides if a document should be further propagated or not. As flat classifiers BoosTexter, CentroidBooster and Support Vector Machines are used, were CentroidBooster is an AdaBoost.MH based alternative similar to BoosTexter. Experiments on the Reuters Corpus Volume 1 and the OHSUMED data set show that the F-1-measure increases if the hierarchal structure of a data set is taken into account. Regarding time complexity we show, that depending on the structure of a hierarchy, learning and classification time can be reduced. Besides these hard classification approaches we also investigate the ranking performance of hierarchical classifiers. Ranking, which can be achieved by providing a meaningful score for each classification decision, is important in most practical settings. We investigate an approach based on using a sigmoid function for calculating a meaningful score, where parameter estimation is based on error bounds from computational learning theory.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 50 条
  • [21] Hierarchical Method for Automated Text Documents Classification
    Mousa, Mohamed H.
    Khedr, Ayman E.
    Idrees, Amira M.
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2025, 22 (01) : 11 - 19
  • [22] Text Classification with Imperfect Hierarchical Structure Knowledge
    Ngo-Ye, Thomas
    Dutt, Abhijit
    AMCIS 2010 PROCEEDINGS, 2010,
  • [23] Text feature selection method for hierarchical classification
    Zhu, Cui-Ling
    Ma, Jun
    Zhang, Dong-Mei
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2011, 24 (01): : 103 - 110
  • [24] Hierarchical Data Augmentation and the Application in Text Classification
    Yu, Shujuan
    Yang, Jie
    Liu, Danlei
    Li, Runqi
    Zhang, Yun
    Zhao, Shengmei
    IEEE ACCESS, 2019, 7 : 185476 - 185485
  • [25] Hierarchical Classification in Text Mining for Sentiment Analysis
    Li, Jinyan
    Fong, Simon
    Zhuang, Yan
    Khoury, Richard
    2014 INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE ISCMI 2014, 2014, : 46 - 51
  • [26] JumpLiteGCN: A Lightweight Approach to Hierarchical Text Classification
    Liu, Teng
    Liu, Xiangzhi
    Dong, Yunfeng
    Wu, Xiaoming
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT IV, NLPCC 2024, 2025, 15362 : 54 - 66
  • [27] HDLTex: Hierarchical Deep Learning for Text Classification
    Kowsari, Kamran
    Brown, Donald E.
    Heidarysafa, Mojtaba
    Meimandi, Kiana Jafari
    Gerber, Matthew S.
    Barnes, Laura E.
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 364 - 371
  • [28] Performance measurement framework for hierarchical text classification
    Sun, A
    Lim, EP
    Ng, WK
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2003, 54 (11): : 1014 - 1028
  • [29] Heterogeneous information integration in hierarchical text classification
    Yang, Huai-Yuan
    Liu, Tie-Yan
    Gao, Li
    Ma, Wei-Ying
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2006, 3918 : 240 - 249
  • [30] Hierarchical Convolutional Attention Networks for Text Classification
    Gao, Shang
    Ramanathan, Arvind
    Tourassi, Georgia
    REPRESENTATION LEARNING FOR NLP, 2018, : 11 - 23