HOW THE PARAMETER ε INFLUENCE THE GROWTH RATES OF THE PARTIAL QUOTIENTS IN GCFε EXPANSIONS

被引:3
|
作者
Zhong, Ting [1 ]
Shen, Luming [2 ]
机构
[1] Jishou Univ, Dept Math, Zhangjiajie 427000, Peoples R China
[2] Hunan Agr Univ, Coll Sci, Changsha 410128, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
GCF(epsilon) expansion; Engel series expansion; parameter function; growth rates; Hausdorff dimension; CONTINUED FRACTIONS;
D O I
10.4134/JKMS.2015.52.3.637
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For generalized continued fraction (GCF) with parameter epsilon(k), we consider the size of the set whose partial quotients increase rapidly, namely the set E-epsilon(alpha) := {x is an element of (0,1] : k(n+1)(x) >= k(n)(x)(alpha) for all n >= 1}, where alpha > 1. We in [6] have obtained the Hausdorff dimension of E-epsilon(alpha) when epsilon(k) is constant or epsilon(k) similar to k(beta) for any beta >= 1. As its supplement, now we show that: dim(H) E-epsilon(alpha) = {1/alpha, when -k(delta) <= epsilon(k) <= k with 0 <= delta < 1; 1/alpha+1, when -k - rho < epsilon(k) <= -k with 0 < rho < 1; 1/alpha+2, when epsilon(k) = -k - 1 + 1/k. So the bigger the parameter function epsilon(k(n)) is, the larger the size of E-epsilon(alpha) becomes.
引用
收藏
页码:637 / 647
页数:11
相关论文
共 50 条
  • [31] ON THE LARGEST DEGREE OF THE PARTIAL QUOTIENTS IN CONTINUED FRACTION EXPANSIONS OVER THE FIELD OF FORMAL LAURENT SERIES
    Shen, Luming
    Xu, Jian
    Jing, Huiping
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) : 1237 - 1247
  • [32] Rational functions over finite fields having continued fraction expansions with linear partial quotients
    Friesen, Christian
    JOURNAL OF NUMBER THEORY, 2007, 126 (02) : 185 - 192
  • [33] A note on the relative growth of products of multiple partial quotients in the plane
    Brown-Sarre, Adam
    Hussain, Mumtaz
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (02): : 544 - 552
  • [34] The growth rate of the partial quotients in a class of continued fractions with parameters
    Zhong, Ting
    Tang, Liang
    JOURNAL OF NUMBER THEORY, 2014, 145 : 388 - 401
  • [35] RATES OF CONVERGENCE OF THE PARTIAL-WAVE EXPANSIONS OF ATOMIC CORRELATION ENERGIES
    KUTZELNIGG, W
    MORGAN, JD
    JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (06): : 4484 - 4508
  • [36] Baire category and the relative growth rate for partial quotients in continued fractions
    Chang, Xinyi
    Dong, Yihan
    Liu, Mengchen
    Shang, Lei
    ARCHIV DER MATHEMATIK, 2024, 122 (01) : 41 - 46
  • [37] DIVERGENCE POINTS WITH FAST GROWTH ORDERS OF THE PARTIAL QUOTIENTS IN CONTINUED FRACTIONS
    Wang, B.
    Wu, J.
    ACTA MATHEMATICA HUNGARICA, 2009, 125 (03) : 261 - 274
  • [38] Divergence points with fast growth orders of the partial quotients in continued fractions
    B. Wang
    J. Wu
    Acta Mathematica Hungarica, 2009, 125 : 261 - 274
  • [39] Baire category and the relative growth rate for partial quotients in continued fractions
    Xinyi Chang
    Yihan Dong
    Mengchen Liu
    Lei Shang
    Archiv der Mathematik, 2024, 122 : 41 - 46
  • [40] Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients
    Bigushev, E. R.
    German, O. N.
    SBORNIK MATHEMATICS, 2023, 214 (03) : 349 - 362