On the number of homotopy types of fibres of a definable map

被引:10
|
作者
Basu, Saugata [1 ]
Vorobjov, Nicolai [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Bath, Dept Comp Sci, Bath BA2 7AY, Avon, England
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2007年 / 76卷
基金
美国国家科学基金会;
关键词
D O I
10.1112/jlms/jdm069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a single exponential upper bound on the number of possible homotopy types of the fibres of a Pfaffian map in terms of the format of its graph. In particular, we show that if a semi-algebraic set S subset of Rm+n, where R is a real closed field, is defined by a Boolean formula with s polynomials of degree less than d, and pi : Rm+n -> R-n is the projection on a subspace, then the number of different homotopy types of fibres of pi does not exceed s(2(m+1)n)(2(m)nd)(O(nm)). As applications of our main results we prove single exponential bounds on the number of homotopy types of semi-algebraic sets defined by fewnomials, and by polynomials with bounded additive complexity. We also prove single exponential upper bounds on the radii of balls guaranteeing local contractibility for semi-algebraic sets defined by polynomials with integer coefficients.
引用
收藏
页码:757 / 776
页数:20
相关论文
共 50 条
  • [31] ENUMERATION OF RATIONAL HOMOTOPY TYPES
    LEMAIRE, JM
    SIGRIST, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (03): : 109 - 112
  • [32] RATIONAL HOMOTOPY TYPES OF COFIBRATIONS
    SHIGA, H
    ASTERISQUE, 1984, (113-) : 298 - 302
  • [33] Homotopy types of topological stacks
    Noohi, Behrang
    ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 2014 - 2047
  • [34] Complements of resultants and homotopy types
    Yamaguchi, K
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1999, 39 (04): : 675 - 684
  • [35] Homotopy Types of Frobenius Complexes
    Tounai, Shouta
    ANNALS OF COMBINATORICS, 2017, 21 (02) : 317 - 329
  • [36] Homotopy types of box complexes
    Csorba, Peter
    COMBINATORICA, 2007, 27 (06) : 669 - 682
  • [37] On Homotopy Types of Alexandroff Spaces
    Michał Jerzy Kukieła
    Order, 2010, 27 : 9 - 21
  • [38] Homotopy Types of Frobenius Complexes
    Shouta Tounai
    Annals of Combinatorics, 2017, 21 : 317 - 329
  • [39] Models for torsion homotopy types
    Casacuberta, C
    Rodríguez, JL
    Paricio, LJH
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 107 (1) : 301 - 318
  • [40] REGULAR RATIONAL HOMOTOPY TYPES
    BODY, R
    COMMENTARII MATHEMATICI HELVETICI, 1975, 50 (01) : 89 - 92