Multivariate statistical monitoring of batch processes: an industrial case study of fermentation supervision

被引:56
|
作者
Albert, S [1 ]
Kinley, RD [1 ]
机构
[1] Eli Lilly & Co Ltd, Speke Operat, Liverpool L24 9LN, Merseyside, England
关键词
D O I
10.1016/S0167-7799(00)01528-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This article describes the development of Multivariate Statistical Process Control (MSPC) procedures for monitoring batch processes and demonstrates its application with respect to industrial tylosin biosynthesis. Currently, the main fermentation phase is monitored using univariate statistical process control principles implemented within the G2 real-time expert system package. This development addresses integrating various process stages into a monitoring system and observing interactions among individual variables through the use of multivariate projection methods. The benefits of this approach will be discussed from an industrial perspective.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [31] Statistical monitoring of a grinding circuit: An industrial case study
    Groenewald, J. W. de V.
    Coetzer, L. P.
    Aldrich, C.
    MINERALS ENGINEERING, 2006, 19 (11) : 1138 - 1148
  • [32] General procedure to aid the development of continuous pharmaceutical processes using multivariate statistical modeling - An industrial case study
    Tomba, Emanuele
    De Martin, Marialuisa
    Facco, Pierantonio
    Robertson, John
    Zomer, Simeone
    Bezzo, Fabrizio
    Barolo, Massimiliano
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2013, 444 (1-2) : 25 - 39
  • [33] Multivariate statistical real-time monitoring of an industrial fed-batch process for the production of specialty chemicals
    Faggian, Andrea
    Facco, Pierantonio
    Doplicher, Franco
    Bezzo, Fabrizio
    Barolo, Massimiliano
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2009, 87 (3A): : 325 - 334
  • [34] Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information
    Yao, Yuan
    Chen, Tao
    Gao, Furong
    JOURNAL OF PROCESS CONTROL, 2010, 20 (10) : 1188 - 1197
  • [35] Monitoring method based on multivariate statistical signal processing for batch process
    National Key Laboratory of Industrial Control Technology, Institute of System Engineering, Zhejiang University, Hangzhou 310027, China
    Zhejiang Daxue Xuebao (Gongxue Ban), 2006, 1 (5-9):
  • [36] Monitoring a PVC batch process with multivariate statistical process control charts
    Tates, AA
    Louwerse, DJ
    Smilde, AK
    Koot, GLM
    Berndt, H
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999, 38 (12) : 4769 - 4776
  • [37] Multivariate statistical analysis of a multi-step industrial processes
    Reinikainen, Satu-Pia
    Hoskuldsson, Agnar
    ANALYTICA CHIMICA ACTA, 2007, 595 (1-2) : 248 - 256
  • [38] Industrial use of multivariate statistical analysis for process monitoring and control
    Champagne, M
    Dudzic, M
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 594 - 599
  • [39] Kernel statistical analysis and monitoring for handling multimode batch processes
    Zhang, Yingwei
    Li, Zhiming
    Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43 (SUPPL.1): : 36 - 40
  • [40] Integrated condition monitoring and control of fed-batch fermentation processes
    Zhang, HW
    Lennox, B
    JOURNAL OF PROCESS CONTROL, 2004, 14 (01) : 41 - 50