DRINFELD MODULES AND SUBFIELDS OF DIVISION FIELDS

被引:0
|
作者
Virdol, Cristian [1 ]
机构
[1] Yonsei Univ, Dept Math, 50 Yonsei Ro, Seoul 120749, South Korea
来源
HOUSTON JOURNAL OF MATHEMATICS | 2016年 / 42卷 / 01期
基金
新加坡国家研究基金会;
关键词
Drinfeld modules; division fields;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = F-q[T], where F-q is a finite field, let Q = F-q(T), and let F be a finite extension of Q. Consider phi a Drinfeld A-module over F of rank r. We write r = hed, where E is the center of D :=End (f) over bar(phi) circle times q, e = [E : Q] and d = [D : E](1/)2. For m epsilon A, let F(phi[m]) be the field obtained by adjoining to F the m-division points phi[m] of phi, and let F(phi[m])' be the subfield of F(phi[m]) fixed by the scalar elements of Gal(F(phi[m])/F) subset of GL(r)(A/mA). In this paper, when r >= 3 and h >= 2, we study the splitting of the primes p of F of degree x in the fields F(phi[m])' and obtain an asymptotic formula which counts them.
引用
收藏
页码:211 / 221
页数:11
相关论文
共 50 条
  • [31] ON TATE-DRINFELD MODULES
    BAE, SH
    KANG, PL
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (02): : 145 - 151
  • [32] Heights and isogenies of Drinfeld modules
    Breuer, Florian
    Pazuki, Fabien
    Razafinjatovo, Mahefason Heriniaina
    ACTA ARITHMETICA, 2021, 197 (02) : 111 - 128
  • [33] Division algebras with common subfields
    Daniel Krashen
    Eliyahu Matzri
    Andrei Rapinchuk
    Louis Rowen
    David Saltman
    manuscripta mathematica, 2022, 169 : 209 - 249
  • [34] On a reduction map for Drinfeld modules
    Bondarewicz, Wojciech
    Krason, Piotr
    ACTA ARITHMETICA, 2020, 195 (02) : 109 - 129
  • [35] Finding endomorphisms of Drinfeld modules
    Kuhn, Nikolas
    Pink, Richard
    JOURNAL OF NUMBER THEORY, 2022, 232 : 118 - 154
  • [36] GAUSSIAN LAWS ON DRINFELD MODULES
    Kuo, Wentang
    Liu, Yu-Ru
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (07) : 1179 - 1203
  • [37] Formal Drinfeld modules and algebraicity
    Cadic, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (04): : 335 - 338
  • [38] AFFINE MODULES AND THE DRINFELD CENTER
    Das, Paramita
    Ghosh, Shamindra Kumar
    Gupta, Ved Prakash
    MATHEMATICA SCANDINAVICA, 2016, 118 (01) : 119 - 151
  • [39] Linear equations on Drinfeld modules
    Chen, Yen-Tsung
    ADVANCES IN MATHEMATICS, 2023, 423
  • [40] Torsion of Drinfeld modules and gonality
    Schweizer, A
    FORUM MATHEMATICUM, 2004, 16 (06) : 925 - 941