Glimpse into the Cellular Internalization and Intracellular Trafficking of Lipid-Based Nanoparticles in Cancer Cells

被引:4
|
作者
Kazemi, Elham Kamal [1 ,2 ]
Abedi-Gaballu, Fereydoon [1 ,3 ]
Hosseini, Tala Farid Mohammad [1 ]
Mohammadi, Ali [2 ,4 ]
Mansoori, Behzad [2 ,4 ,5 ]
Dehghan, Gholamreza [1 ]
Baradaran, Behzad [2 ]
Sheibani, Nader [6 ,7 ,8 ]
机构
[1] Univ Tabriz, Fac Nat Sci, Dept Biol, Tabriz, Iran
[2] Tabriz Univ Med Sci, Immunol Res Ctr, Tabriz, Iran
[3] Tabriz Univ Med Sci, Student Res Comm, Tabriz, Iran
[4] Univ Southern Denmark, Inst Mol Med, Dept Canc & Inflammat Res, Odense, Denmark
[5] Tabriz Univ Med Sci, Phys Med & Rehabil Res Ctr, Aging Res Inst, Tabriz, Iran
[6] Univ Wisconsin, Sch Med & Publ Hlth, Dept Ophthalmol & Visual Sci, Madison, WI USA
[7] Univ Wisconsin, Sch Med & Publ Hlth, Dept Biomed Engn, Madison, WI USA
[8] Univ Wisconsin, Sch Med & Publ Hlth, Dept Cell & Regenerat Biol, Madison, WI USA
关键词
Cancer; cellular uptake; drug delivery; endocytosis; intracellular trafficking; lipid-based nanoparticles; OCTAARGININE-MODIFIED LIPOSOMES; TRANSDERMAL DELIVERY-SYSTEM; CO-DELIVERY; ANTICANCER ACTIVITY; COLORECTAL-CANCER; SIRNA DELIVERY; GENE DELIVERY; DRUG; CYTOTOXICITY; TRANSFERRIN;
D O I
10.2174/1871520621666210906101421
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Lipid-based nanoparticles, as drug delivery carriers, are commonly used for the delivery of anti-cancer therapeutic agents. Due to their smaller particle size and similarity to cell membranes, Lipid-based nanoparticles are readily internalized into cancer cells. Cancer cells also overexpress receptors for specific ligands, including folic acid, hyaluronic acid, and transferrin, on their surface, thus, allowing the use of their ligands for surface modification of the lipid-based nanoparticles for their specific recognition by receptors on cancer cells. This would also allow the gradual intracellular accumulation of the targeted functionalized nanoplatforms. These ligand-receptor interactions eventually enhance the internalization of desired drugs by increasing the nanoplatforms cellular uptake. The cellular internalization of the nanoplatforms varies and depends on their physicochemical properties, including particle size, zeta potential, and shape. The cellular uptake is also influenced by the types of ligand internalization pathways utilized by cells, such as phagocytosis, macropinocytosis, and multiple endocytosis pathways. This review classifies and discusses lipid-based nanoparticles engineered to carry specific ligands, their recognition by receptors on cancer cells, and their cellular internalization pathways. Moreover, the intracellular fate of nanoparticles decorated with specific ligands and their best internalization pathway (caveolae-mediated endocytosis) for safe cargo delivery are also discussed.
引用
收藏
页码:1897 / 1912
页数:16
相关论文
共 50 条
  • [21] Lipid-based nanoparticles as drug delivery carriers for cancer therapy
    Waheed, Ibtesam
    Ali, Anwar
    Tabassum, Huma
    Khatoon, Narjis
    Lai, Wing-Fu
    Zhou, Xin
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [22] Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy
    Hao, Yang
    Ji, Zhonghao
    Zhou, Hengzong
    Wu, Dongrun
    Gu, Zili
    Wang, Dongxu
    ten Dijke, Peter
    MEDCOMM, 2023, 4 (04):
  • [23] Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment
    Garcia-Pinel, Beatriz
    Porras-Alcala, Cristina
    Ortega-Rodriguez, Alicia
    Sarabia, Francisco
    Prados, Jose
    Melguizo, Consolacion
    Lopez-Romero, Juan M.
    NANOMATERIALS, 2019, 9 (04)
  • [24] Internalization and intracellular trafficking of VacA protein toxin in cultured cells
    Ricci, V
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2000, 440 (05): : R23 - R23
  • [25] Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles
    Singh, Raman Preet
    Ramarao, Poduri
    TOXICOLOGY LETTERS, 2012, 213 (02) : 249 - 259
  • [26] Surface Modification of Lipid-Based Nanoparticles
    Xu, Yining
    Fourniols, Thibaut
    Labrak, Yasmine
    Preat, Veronique
    Beloqui, Ana
    des Rieux, Anne
    ACS NANO, 2022, 16 (05) : 7168 - 7196
  • [27] Interactions of Apolipoproteins with Lipid-Based Nanoparticles
    Dalhaimer, Paul
    Florey, Brice
    Isaac, Sami
    ACS NANO, 2023, 17 (02) : 837 - 842
  • [28] In vivo fate of lipid-based nanoparticles
    Qi, Jianping
    Zhuang, Jie
    Lu, Yi
    Dong, Xiaochun
    Zhao, Weili
    Wu, Wei
    DRUG DISCOVERY TODAY, 2017, 22 (01) : 166 - 172
  • [29] Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii
    Wang, Songshan
    Lv, Jitao
    Ma, Jingyuan
    Zhang, Shuzhen
    NANOTOXICOLOGY, 2016, 10 (08) : 1129 - 1135
  • [30] Physicochemical Characteristics of Nanoparticles Affect Circulation, Biodistribution, Cellular Internalization, and Trafficking
    Duan, Xiaopin
    Li, Yaping
    SMALL, 2013, 9 (9-10) : 1521 - 1532