Multi-Level Generative Chaotic Recurrent Network for Image Inpainting

被引:5
|
作者
Chen, Cong [1 ]
Abbott, Amos [1 ]
Stilwell, Daniel [1 ]
机构
[1] Virginia Tech, Blacksburg, VA 24060 USA
关键词
DEEP; ALGORITHM;
D O I
10.1109/WACV48630.2021.00367
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel multi-level generative chaotic Recurrent Neural Network (RNN) for image inpainting. This technique utilizes a general framework with multiple chaotic RNN that makes learning the image prior from a single corrupted image more robust and efficient. The proposed network utilizes a randomly-initialized process for parameterization, along with a unique quad-directional encoder structure, chaotic state transition, and adaptive importance for multi-level RNN updating. The efficacy of the approach has been validated through multiple experiments. In spite of a much lower computational load, quantitative comparisons reveal that the proposed approach exceeds the performance of several image-restoration benchmarks.
引用
收藏
页码:3625 / 3634
页数:10
相关论文
共 50 条
  • [21] Semantic Image Inpainting with Multi-Stage Feature Reasoning Generative Adversarial Network
    Li, Guangyao
    Li, Liangfu
    Pu, Yingdan
    Wang, Nan
    Zhang, Xi
    SENSORS, 2022, 22 (08)
  • [22] Face Image Inpainting Based on Generative Adversarial Network
    Gao, Xinyi
    Minh Nguyen
    Yan, Wei Qi
    PROCEEDINGS OF THE 2021 36TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2021,
  • [23] Multi-Scale Generative Adversarial Network With Multi-Head External Attention for Image Inpainting
    Chen, Gang
    Feng, Qing
    He, Xiu
    Yao, Jian
    IEEE ACCESS, 2024, 12 : 133456 - 133468
  • [24] Multi-level image thresholding using Otsu and chaotic bat algorithm
    Suresh Chandra Satapathy
    N. Sri Madhava Raja
    V. Rajinikanth
    Amira S. Ashour
    Nilanjan Dey
    Neural Computing and Applications, 2018, 29 : 1285 - 1307
  • [25] Multi-level image thresholding using Otsu and chaotic bat algorithm
    Satapathy, Suresh Chandra
    Raja, N. Sri Madhava
    Rajinikanth, V.
    Ashour, Amira S.
    Dey, Nilanjan
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (12): : 1285 - 1307
  • [26] MISF:Multi-level Interactive Siamese Filtering for High-Fidelity Image Inpainting
    Li, Xiaoguang
    Guo, Qing
    Lin, Di
    Li, Ping
    Feng, Wei
    Wang, Song
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1859 - 1868
  • [27] ISRnet: Compressed Image Inpainting Based on Generative Adversarial Network
    Huang, Junjian
    Zheng, Mao
    Li, Zhizhang
    He, Xing
    Wen, Shiping
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [28] Image Inpainting Using Wasserstein Generative Adversarial Imputation Network
    Vasata, Daniel
    Halama, Tomas
    Friedjungova, Magda
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 575 - 586
  • [29] Semantic face image inpainting based on Generative Adversarial Network
    Zhang, Heshu
    Li, Tao
    2020 35TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2020, : 530 - 535
  • [30] Edge-Guided Generative Adversarial Network for Image Inpainting
    Xu, Shunxin
    Liu, Dong
    Xiong, Zhiwei
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,