共 50 条
A hierarchical nanostructure consisting of amorphous MnO2, Mn3O4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors
被引:144
|作者:
Hu, Chi-Chang
[1
]
Hung, Ching-Yun
[1
]
Chang, Kuo-Hsin
[1
,2
]
Yang, Yi-Lin
[2
]
机构:
[1] Natl Tsing Hua Univ, Dept Chem Engn, Hsinchu 30013, Taiwan
[2] Natl Chung Cheng Univ, Dept Chem Engn, Chiayi 621, Taiwan
关键词:
Ternary nanocomposite;
Manganese oxides;
Cycle stability;
Supercapacitor;
CHARGE STORAGE MECHANISM;
CAPACITIVE CHARACTERISTICS;
ANODIC DEPOSITION;
HIGH-POWER;
BEHAVIOR;
RUO2;
D O I:
10.1016/j.jpowsour.2010.08.001
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
In this communication, a porous hierarchical nanostructure consisting of amorphous MnO2 (a-MnO2), Mn3O4 nanocrystals, and single-crystalline MnOOH nanowires is designed for the supercapacitor application, which is prepared by a simple two-step electrochemical deposition process. Because of the gradual co-transformation of Mn3O4 nanocrystals and a-MnO2 nanorods into an amorphous manganese oxide, the cycle stability of a-MnO2 is obviously enhanced by adding Mn3O4. This unique ternary oxide nanocomposite with 100-cycle CV activation exhibits excellent capacitive performances, i.e., excellent reversibility, high specific capacitances (470 Fg(-1) in CaCl2), high power property, and outstanding cycle stability. The highly porous microstructures of this composite before and after the 10,000-cycle CV test are examined by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:847 / 850
页数:4
相关论文