Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI

被引:194
|
作者
Yushkevich, Paul A. [1 ]
Wang, Hongzhi [1 ]
Pluta, John [1 ,2 ,3 ]
Das, Sandhitsu R. [1 ]
Craige, Caryne [1 ]
Avants, Brian B. [1 ]
Weiner, Michael W. [4 ]
Mueller, Susanne [4 ]
机构
[1] Univ Penn, Dept Radiol, Penn Image Comp & Sci Lab, Philadelphia, PA 19104 USA
[2] Univ Penn, Ctr Funct Neuroimaging, Dept Neurol, Philadelphia, PA 19104 USA
[3] Univ Penn, Ctr Funct Neuroimaging, Dept Radiol, Philadelphia, PA 19104 USA
[4] Univ Calif San Francisco, Dept Vet Affairs Med Ctr, San Francisco, CA 94143 USA
关键词
MILD COGNITIVE IMPAIRMENT; HIGH-RESOLUTION MRI; ALZHEIMERS-DISEASE; MAGNETIC-RESONANCE; IMAGE SEGMENTATION; ATLAS SELECTION; BRAIN IMAGES; ATROPHY; IMPLEMENTATION; REGISTRATION;
D O I
10.1016/j.neuroimage.2010.06.040
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We present and evaluate a new method for automatically labeling the subfields of the hippocampal formation in focal 0.4 x 0.5 x 2.0 mm(3) resolution T2-weighted magnetic resonance images that can be acquired in the routine clinical setting with under 5 min scan time. The method combines multi-atlas segmentation, similarity-weighted voting, and a novel learning-based bias correction technique to achieve excellent agreement with manual segmentation. Initial partitioning of MRI slices into hippocampal 'head', 'body' and 'tail' slices is the only input required from the user, necessitated by the nature of the underlying segmentation protocol. Dice overlap between manual and automatic segmentation is above 0.87 for the larger subfields, CA1 and dentate gyrus, and is competitive with the best results for whole-hippocampus segmentation in the literature. Intraclass correlation of volume measurements in CA1 and dentate gyrus is above 0.89. Overlap in smaller hippocampal subfields is lower in magnitude (0.54 for CA2, 0.62 for CA3, 0.77 for subiculum and 0.79 for entorhinal cortex) but comparable to overlap between manual segmentations by trained human raters. These results support the feasibility of subfield-specific hippocampal morphometry in clinical studies of memory and neurodegenerative disease. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1208 / 1224
页数:17
相关论文
共 50 条
  • [21] T2-Weighted Liver MRI Using the MultiVane Technique at 3T: Comparison with Conventional T2-Weighted MRI
    Kang, Kyung A.
    Kim, Young Kon
    Kim, EunJu
    Jeong, Woo Kyoung
    Choi, Dongil
    Lee, Won Jae
    Jung, Sin-Ho
    Baek, Sun-Young
    KOREAN JOURNAL OF RADIOLOGY, 2015, 16 (05) : 1038 - 1046
  • [22] Mathematical Morphology Aided Enhancement and Segmentation of T2-Weighted Brain MRI Images
    Sarkar, Shramana Guha
    Dey, Debangshu
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL POWER AND INSTRUMENTATION (ICICPI), 2016, : 122 - 126
  • [23] Automatic prostate and peri-prostatic fat segmentation based on pyramid mechanism fusion network for T2-weighted MRI
    Li, Yuchun
    Wu, Yuanyuan
    Huang, Mengxing
    Zhang, Yu
    Bai, Zhiming
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 223
  • [24] Automatic multispectral MRI segmentation of human hippocampal subfields: an evaluation of multicentric test–retest reproducibility
    Andrea Chiappiniello
    Roberto Tarducci
    Cristina Muscio
    Maria Grazia Bruzzone
    Marco Bozzali
    Pietro Tiraboschi
    Anna Nigri
    Claudia Ambrosi
    Elena Chipi
    Stefania Ferraro
    Cristina Festari
    Roberto Gasparotti
    Ruben Gianeri
    Giovanni Giulietti
    Lorella Mascaro
    Chiara Montanucci
    Valentina Nicolosi
    Cristina Rosazza
    Laura Serra
    Giovanni B. Frisoni
    Daniela Perani
    Fabrizio Tagliavini
    Jorge Jovicich
    Brain Structure and Function, 2021, 226 : 137 - 150
  • [25] Model-Based Segmentation of Hippocampal Subfields in Ultra-High Resolution In Vivo MRI
    Van Leemput, Koen
    Bakkour, Akram
    Benner, Thomas
    Wiggins, Graham
    Wald, Lawrence L.
    Augustinack, Jean
    Dickerson, Bradford C.
    Golland, Polina
    Fischl, Bruce
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT I, PROCEEDINGS, 2008, 5241 : 235 - +
  • [26] An automatic tumor segmentation framework of cervical cancer in T2-weighted and diffusion weighted magnetic resonance images
    Kao, Yueying
    Li, Wu
    Xue, Huadan
    Ren, Cui
    Tian, Jie
    MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [27] Semi-automatic segmentation of myocardium at risk in T2-weighted cardiovascular magnetic resonance
    Jane Sjögren
    Joey FA Ubachs
    Henrik Engblom
    Marcus Carlsson
    Håkan Arheden
    Einar Heiberg
    Journal of Cardiovascular Magnetic Resonance, 14
  • [28] Semi-automatic segmentation of myocardium at risk in T2-weighted cardiovascular magnetic resonance
    Sjogren, Jane
    Ubachs, Joey F. A.
    Engblom, Henrik
    Carlsson, Marcus
    Arheden, Hakan
    Heiberg, Einar
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2012, 14 : 10
  • [29] Automatic zonal segmentation of the prostate from 2D and 3D T2-weighted MRI and evaluation for clinical use
    Hamzaoui, Dimitri
    Montagne, Sarah
    Renard-Penna, Raphaele
    Ayache, Nicholas
    Delingette, Herve
    JOURNAL OF MEDICAL IMAGING, 2022, 9 (02) : 24001
  • [30] Automatic multispectral MRI segmentation of human hippocampal subfields: an evaluation of multicentric test-retest reproducibility
    Chiappiniello, Andrea
    Tarducci, Roberto
    Muscio, Cristina
    Bruzzone, Maria Grazia
    Bozzali, Marco
    Tiraboschi, Pietro
    Nigri, Anna
    Ambrosi, Claudia
    Chipi, Elena
    Ferraro, Stefania
    Festari, Cristina
    Gasparotti, Roberto
    Gianeri, Ruben
    Giulietti, Giovanni
    Mascaro, Lorella
    Montanucci, Chiara
    Nicolosi, Valentina
    Rosazza, Cristina
    Serra, Laura
    Frisoni, Giovanni B.
    Perani, Daniela
    Tagliavini, Fabrizio
    Jovicich, Jorge
    BRAIN STRUCTURE & FUNCTION, 2021, 226 (01): : 137 - 150