Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI

被引:194
|
作者
Yushkevich, Paul A. [1 ]
Wang, Hongzhi [1 ]
Pluta, John [1 ,2 ,3 ]
Das, Sandhitsu R. [1 ]
Craige, Caryne [1 ]
Avants, Brian B. [1 ]
Weiner, Michael W. [4 ]
Mueller, Susanne [4 ]
机构
[1] Univ Penn, Dept Radiol, Penn Image Comp & Sci Lab, Philadelphia, PA 19104 USA
[2] Univ Penn, Ctr Funct Neuroimaging, Dept Neurol, Philadelphia, PA 19104 USA
[3] Univ Penn, Ctr Funct Neuroimaging, Dept Radiol, Philadelphia, PA 19104 USA
[4] Univ Calif San Francisco, Dept Vet Affairs Med Ctr, San Francisco, CA 94143 USA
关键词
MILD COGNITIVE IMPAIRMENT; HIGH-RESOLUTION MRI; ALZHEIMERS-DISEASE; MAGNETIC-RESONANCE; IMAGE SEGMENTATION; ATLAS SELECTION; BRAIN IMAGES; ATROPHY; IMPLEMENTATION; REGISTRATION;
D O I
10.1016/j.neuroimage.2010.06.040
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We present and evaluate a new method for automatically labeling the subfields of the hippocampal formation in focal 0.4 x 0.5 x 2.0 mm(3) resolution T2-weighted magnetic resonance images that can be acquired in the routine clinical setting with under 5 min scan time. The method combines multi-atlas segmentation, similarity-weighted voting, and a novel learning-based bias correction technique to achieve excellent agreement with manual segmentation. Initial partitioning of MRI slices into hippocampal 'head', 'body' and 'tail' slices is the only input required from the user, necessitated by the nature of the underlying segmentation protocol. Dice overlap between manual and automatic segmentation is above 0.87 for the larger subfields, CA1 and dentate gyrus, and is competitive with the best results for whole-hippocampus segmentation in the literature. Intraclass correlation of volume measurements in CA1 and dentate gyrus is above 0.89. Overlap in smaller hippocampal subfields is lower in magnitude (0.54 for CA2, 0.62 for CA3, 0.77 for subiculum and 0.79 for entorhinal cortex) but comparable to overlap between manual segmentations by trained human raters. These results support the feasibility of subfield-specific hippocampal morphometry in clinical studies of memory and neurodegenerative disease. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1208 / 1224
页数:17
相关论文
共 50 条
  • [1] In vivo Analysis of Hippocampal Subfield Atrophy in Mild Cognitive Impairment via Semi-Automatic Segmentation of T2-Weighted MRI
    Pluta, John
    Yushkevich, Paul
    Das, Sandhitsu
    Wolk, David
    JOURNAL OF ALZHEIMERS DISEASE, 2012, 31 (01) : 85 - 99
  • [2] Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI
    Gatos, Ilias
    Tsantis, Stavros
    Karamesini, Maria
    Spiliopoulos, Stavros
    Karnabatidis, Dimitris
    Hazle, John D.
    Kagadis, George C.
    MEDICAL PHYSICS, 2017, 44 (07) : 3695 - 3705
  • [3] Improved deep learning for automatic localisation and segmentation of rectal cancer on T2-weighted MRI
    Zhang, Zaixian
    Han, Junqi
    Ji, Weina
    Lou, Henan
    Li, Zhiming
    Hu, Yabin
    Wang, Mingjia
    Qi, Baozhu
    Liu, Shunli
    JOURNAL OF MEDICAL RADIATION SCIENCES, 2024, 71 (04) : 509 - 518
  • [4] Automatic Segmentation of Hippocampal Subfields MRI Based on FPN-DenseVoxNet
    Chen, Yulong
    Liu, Yali
    2021 ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE (ACCTCS 2021), 2021, : 58 - 62
  • [5] SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans
    Karthik, Enamundram Naga
    Valosek, Jan
    Smith, Andrew C.
    Pfyffer, Dario
    Schading-Sassenhausen, Simon
    Farner, Lynn
    Weber Ii, Kenneth A.
    Freund, Patrick
    Cohen-Adad, Julien
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2025, 7 (01)
  • [6] Automatic Segmentation of Vestibular Schwannoma from T2-Weighted MRI by Deep Spatial Attention with Hardness-Weighted Loss
    Wang, Guotai
    Shapey, Jonathan
    Li, Wenqi
    Dorent, Reuben
    Demitriadis, Alex
    Bisdas, Sotirios
    Paddick, Ian
    Bradford, Robert
    Zhang, Shaoting
    Ourselin, Sebastien
    Vercauteren, Tom
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 264 - 272
  • [7] Measuring longitudinal change in the hippocampal formation from in vivo high-resolution T2-weighted MRI
    Das, Sandhitsu R.
    Avants, Brian B.
    Pluta, John
    Wang, Hongzhi
    Suh, Jung W.
    Weiner, Michael W.
    Mueller, Susanne G.
    Yushkevich, Paul A.
    NEUROIMAGE, 2012, 60 (02) : 1266 - 1279
  • [8] Characterization of hippocampal subfields using ex vivo MRI and histology data: Lessons for in vivo segmentation
    de Flores, Robin
    Berron, David
    Ding, Song-Lin
    Ittyerah, Ranjit
    Pluta, John B.
    Xie, Long
    Adler, Daniel H.
    Robinson, John L.
    Schuck, Theresa
    Trojanowski, John Q.
    Grossman, Murray
    Liu, Weixia
    Pickup, Stephen
    Das, Sandhitsu R.
    Wolk, David A.
    Yushkevich, Paul A.
    Wisse, Laura E. M.
    HIPPOCAMPUS, 2020, 30 (06) : 545 - 564
  • [9] Automatic segmentation of myocardium at risk in T2-weighted cardiovascular magnetic resonance
    Jane Sjogren
    Joey F Ubachs
    Henrik Engblom
    Marcus Carlsson
    Hakan Arheden
    Einar Heiberg
    Journal of Cardiovascular Magnetic Resonance, 14 (Suppl 1)
  • [10] A (sub)field guide to quality control in hippocampal subfield segmentation on high-resolution T2-weighted MRI
    Canada, Kelsey L.
    Mazloum-Farzaghi, Negar
    Radman, Gustaf
    Adams, Jenna N.
    Bakker, Arnold
    Baumeister, Hannah
    Berron, David
    Bocchetta, Martina
    Carr, Valerie A.
    Dalton, Marshall A.
    de Flores, Robin
    Keresztes, Attila
    La Joie, Renaud
    Mueller, Susanne G.
    Raz, Naftali
    Santini, Tales
    Shaw, Thomas
    Stark, Craig E. L.
    Tran, Tammy T.
    Wang, Lei
    Wisse, Laura E. M.
    Wuestefeld, Anika
    Yushkevich, Paul A.
    Olsen, Rosanna K.
    Daugherty, Ana M.
    HUMAN BRAIN MAPPING, 2024, 45 (15)