DYNAMICS OF A CLASS OF ODES VIA WAVELETS

被引:1
|
作者
Rodrigues, Hildebrando M. [1 ]
Caraballo, Tomas [2 ]
Gameiro, Marcio [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Seville, Dpto Ecuac Diferenciales & Anal Numer, Fac Matemat, Tarfia S-N, E-41012 Seville, Spain
基金
巴西圣保罗研究基金会;
关键词
EQUATION;
D O I
10.3934/cpaa.2017115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this paper is to study a perturbed linear hyperbolic differential equation. The first part of this work is dedicated to study perturbation of the equilibrium (special solution) of a perturbed hyperbolic system. On the second part we analyze the stable and the unstable manifolds of a perturbed semilinear differential equation. We assume that the perturbed forcing function belongs to an L-2 class and that it is developed in a series of wavelets. Then we analyze the effect of this development on the special solution of the perturbed equation. Similar study is provided for the stable and unstable manifolds of this special solutions.
引用
收藏
页码:2337 / 2355
页数:19
相关论文
共 50 条
  • [31] Automatic smoothing with wavelets for a wide class of distributions
    Sardy, S
    Antoniadis, A
    Tseng, P
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (02) : 399 - 421
  • [32] A remark on the orthogonality of a class bidimensional nonseparable wavelets
    Li, YZ
    ACTA MATHEMATICA SCIENTIA, 2004, 24 (04) : 569 - 576
  • [33] Multidimensional supercompact wavelets for fluid dynamics
    Lee, D
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2003, 43 (04) : 307 - 329
  • [34] A REMARK ON THE ORTHOGONALITY OF A CLASS BIDIMENSIONAL NONSEPARABLE WAVELETS
    李云章
    ActaMathematicaScientia, 2004, (04) : 569 - 576
  • [35] Change curve estimation via wavelets
    Wang, YZ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 163 - 172
  • [36] A note on random densities via wavelets
    Vidakovic, B
    STATISTICS & PROBABILITY LETTERS, 1996, 26 (04) : 315 - 321
  • [37] Graph Wavelets via Sparse Cuts
    Silva, Arlei
    Dang, Xuan-Hong
    Basu, Prithwish
    Singh, Ambuj
    Swami, Ananthram
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1175 - 1184
  • [38] Model reduction via Haar wavelets
    Wu, J.L.
    Chen, C.H.
    Chen, C.F.
    Control and Intelligent Systems, 2001, 29 (02) : 29 - 32
  • [39] HREELS signal processing via wavelets
    Charles, C
    Leclerc, G
    Rasson, JP
    Pireaux, JJ
    SURFACE AND INTERFACE ANALYSIS, 2004, 36 (01) : 61 - 70
  • [40] Nonlinear Graph Wavelets via Medianfication
    Tay, David B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 2744 - 2759