DYNAMICS OF A CLASS OF ODES VIA WAVELETS

被引:1
|
作者
Rodrigues, Hildebrando M. [1 ]
Caraballo, Tomas [2 ]
Gameiro, Marcio [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Seville, Dpto Ecuac Diferenciales & Anal Numer, Fac Matemat, Tarfia S-N, E-41012 Seville, Spain
基金
巴西圣保罗研究基金会;
关键词
EQUATION;
D O I
10.3934/cpaa.2017115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this paper is to study a perturbed linear hyperbolic differential equation. The first part of this work is dedicated to study perturbation of the equilibrium (special solution) of a perturbed hyperbolic system. On the second part we analyze the stable and the unstable manifolds of a perturbed semilinear differential equation. We assume that the perturbed forcing function belongs to an L-2 class and that it is developed in a series of wavelets. Then we analyze the effect of this development on the special solution of the perturbed equation. Similar study is provided for the stable and unstable manifolds of this special solutions.
引用
收藏
页码:2337 / 2355
页数:19
相关论文
共 50 条
  • [1] Dynamics of a class of ODEs more general than almost periodic
    Kloeden, P. E.
    Rodrigues, H. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (07) : 2695 - 2719
  • [2] Monotonicity of the period function and chaotic dynamics in a class of singular ODEs
    Burra, Lakshmi
    Zanolin, Fabio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)
  • [3] ON ODES IN THE ULTRADIFFERENTIABLE CLASS
    YAMANAKA, T
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 17 (07) : 599 - 611
  • [4] On a class of optimal wavelets
    Strelkov, NA
    Dol'Nikov, VL
    WAVELET ANALYSIS AND ITS APPLICATIONS (WAA), VOLS 1 AND 2, 2003, : 639 - 646
  • [5] Global bifurcation for a class of nonlinear ODEs
    Bettiol, Renato G.
    Piccione, Paolo
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 486 - 507
  • [6] Global bifurcation for a class of nonlinear ODEs
    Renato G. Bettiol
    Paolo Piccione
    São Paulo Journal of Mathematical Sciences, 2022, 16 : 486 - 507
  • [7] Numerical Solution of Stiff ODEs using Non-Uniform Haar Wavelets
    Aziz, Imran
    Yasmeen, Shumaila
    Tsukrejev, Pavel
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [8] Coupled ODEs Model for the Dynamics of Dunes
    Nishimori, Hiraku
    Katsuki, Atsunari
    Sakamoto, Hiromi
    Niiya, Hirofumi
    IUTAM-ISIMM SYMPOSIUM ON MATHEMATICAL MODELING AND PHYSICAL INSTANCES OF GRANULAR FLOWS, 2010, 1227 : 441 - 441
  • [9] Period two implies chaos for a class of odes
    Obersnel, Franco
    Omari, Pierpaolo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (07) : 2055 - 2058
  • [10] On the holes of a class of bidimensional nonseparable wavelets
    Li, YZ
    JOURNAL OF APPROXIMATION THEORY, 2003, 125 (02) : 151 - 168