VARIATIONAL METHODS FOR THE SOLUTION OF FRACTIONAL DISCRETE/CONTINUOUS STURM-LIOUVILLE PROBLEMS

被引:8
|
作者
Almeida, Ricardo [1 ]
Malinowska, Agnieszka B. [2 ]
Luisa Morgado, M. [3 ]
Odzijewicz, Tatiana [4 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[3] Univ Tras Os Montes & Alto Douro, Dept Math, Polo CMAT UTAD, Ctr Matemat, P-5000801 Vila Real, Portugal
[4] Warsaw Sch Econ, Dept Math & Math Econ, PL-02554 Warsaw, Poland
关键词
fractional Sturm-Liouville problem; fractional calculus of variations; discrete fractional calculus; continuous fractional calculus; NUMERICAL-SOLUTION; BOUNDED DOMAINS; DIFFUSION; MECHANICS; DERIVATIVES; CALCULUS; DYNAMICS; EQUATION; MEDIA;
D O I
10.2140/jomms.2017.12.3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fractional Sturm-Liouville eigenvalue problem appears in many situations, e.g., while solving anomalous diffusion equations coming from physical and engineering applications. Therefore, obtaining solutions or approximations of solutions to this problem is of great importance. Here, we describe how the fractional Sturm-Liouville eigenvalue problem can be formulated as a constrained fractional variational principle and show how such formulation can be used in order to approximate the solutions. Numerical examples are given to illustrate the method.
引用
收藏
页码:3 / 21
页数:19
相关论文
共 50 条