Variational and Numerical Approximations for Higher Order Fractional Sturm-Liouville Problems

被引:1
|
作者
Pandey, Divyansh [1 ]
Pandey, Prashant K. [2 ]
Pandey, Rajesh K. [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] VIT Bhopal Univ, Sch Adv Sci & Languages, Dept Math, Sehore 466114, Madhya Pradesh, India
关键词
Fractional variational analysis; Fractional Sturm-Liouville problem (FSLP); Calculus of variations; EULER-LAGRANGE EQUATIONS; UNBOUNDED-DOMAINS THEORY; CALCULUS;
D O I
10.1007/s42967-023-00340-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to studying the variational approximation for the higher order regular fractional Sturm-Liouville problems (FSLPs). Using variational principle, we demonstrate that the FSLP has a countable set of eigenvalues and corresponding unique eigenfunctions. Furthermore, we establish two results showing that the eigenfunctions corresponding to distinct eigenvalues are orthogonal, and the smallest (first) eigenvalue is the minimizer of the functional. To validate the theoretical result, we also present a numerical method using polynomials phi j(t)=tj+1(1-t)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi _j(t) = t<^>{j+1}(1-t)<^>2$$\end{document} for j=1,2,3,MIDLINE HORIZONTAL ELLIPSIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,3,\cdots $$\end{document} as a basis function. Further, the Lagrange multiplier method is used to reduce the fractional variational problem into a system of algebraic equations. In order to find the eigenvalues and eigenfunctions, we solve the algebraic system of equations. Further, the analytical convergence and the absolute error of the method are analyzed.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Numerical methods for higher order Sturm-Liouville problems
    Greenberg, L
    Marletta, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 367 - 383
  • [2] On the numerical solution of fractional Sturm-Liouville problems
    Al-Mdallal, Qasem M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (12) : 2837 - 2845
  • [3] Theory and numerical approaches of high order fractional Sturm-Liouville problems
    Houlari, Tahereh
    Dehghan, Mohammad
    Biazar, Jafar
    Nouri, Alireza
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (04) : 1564 - 1579
  • [4] Some results on the fractional order Sturm-Liouville problems
    Yuanfang Ru
    Fanglei Wang
    Tianqing An
    Yukun An
    Advances in Difference Equations, 2017
  • [5] Some results on the fractional order Sturm-Liouville problems
    Ru, Yuanfang
    Wang, Fanglei
    An, Tianqing
    An, Yukun
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [6] High order approximations of the eigenvalues of regular Sturm-Liouville problems
    Chanane, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 226 (01) : 121 - 129
  • [7] An efficient algorithm for solving higher-order fractional Sturm-Liouville eigenvalue problems
    Hajji, Mohamed A.
    Al-Mdallal, Qasem M.
    Allan, Fathi M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 272 : 550 - 558
  • [8] Analysis of Spectral Approximations Using Eigenfunctions of Fractional Sturm-Liouville Problems
    Wang, Haiyong
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 1655 - 1677
  • [9] VARIATIONAL APPROXIMATION FOR FRACTIONAL STURM-LIOUVILLE PROBLEM
    Pandey, Prashant K.
    Pandey, Rajesh K.
    Agrawal, Om P.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (03) : 861 - 874
  • [10] VARIATIONAL METHODS FOR THE SOLUTION OF FRACTIONAL DISCRETE/CONTINUOUS STURM-LIOUVILLE PROBLEMS
    Almeida, Ricardo
    Malinowska, Agnieszka B.
    Luisa Morgado, M.
    Odzijewicz, Tatiana
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2017, 12 (01) : 3 - 21