A general random walk model of molecular motor

被引:0
|
作者
Wang, XJ [1 ]
Al, BQ [1 ]
Liu, GT [1 ]
Liu, LG [1 ]
机构
[1] Zhongshan Univ, Dept Phys, Guangzhou 510275, Peoples R China
关键词
87.10.+e; 87.14.Gg; 05.90.+m;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general random walk model framework is presented which can be used to statistically describe the internal dynamics and external mechanical movement of molecular motors along filament track. The motion of molecular motor in a periodic potential and a constant force is considered. We show that the molecular motor's movement becomes slower with the potential barrier increasing, but if the force is increased, the molecular motor's movement becomes faster. The relation between the effective rate constant and the potential barrier's height, and that between the effective rate constant and the value of the force are discussed. Our results are consistent with the experiments and relevant theoretical consideration, and can be used to explain some physiological phenomena.
引用
收藏
页码:237 / 240
页数:4
相关论文
共 50 条
  • [31] Volume explored by a branching random walk on general graphs
    Ignacio Bordeu
    Saoirse Amarteifio
    Rosalba Garcia-Millan
    Benjamin Walter
    Nanxin Wei
    Gunnar Pruessner
    Scientific Reports, 9
  • [32] Volume explored by a branching random walk on general graphs
    Bordeu, Ignacio
    Amarteifio, Saoirse
    Garcia-Millan, Rosalba
    Walter, Benjamin
    Wei, Nanxin
    Pruessner, Gunnar
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [33] Random Walk on the Range of Random Walk
    David A. Croydon
    Journal of Statistical Physics, 2009, 136 : 349 - 372
  • [34] A random walk on a random walk path
    Grill, K
    ASYMPTOTIC METHODS IN PROBABILITY AND STATISTICS: A VOLUME IN HONOUR OF MIKLOS CSORGO, 1998, : 235 - 242
  • [35] Random Walk on the Range of Random Walk
    Croydon, David A.
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (02) : 349 - 372
  • [36] APPLICABILITY OF RANDOM WALK MODEL TO FREE MOLECULAR MOTION IN THE DIRECT SIMULATION METHOD.
    Nanbu, K.
    Reports of the Institute High Speed Mechanics, Tohoku University, 1982, 45 : 77 - 83
  • [37] Molecular phase space transport in water: Non-stationary random walk model
    Nerukh, Dmitry
    Ryabov, Vladimir
    Taiji, Makoto
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (22) : 4719 - 4726
  • [38] General random walk in a random environment defined on Galton-Watson trees
    Barbour, A. D.
    Collevecchio, Andrea
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 1657 - 1674
  • [39] Random walk of motor planning in task-irrelevant dimensions
    van Beers, Robert J.
    Brenner, Eli
    Smeets, Jeroen B. J.
    JOURNAL OF NEUROPHYSIOLOGY, 2013, 109 (04) : 969 - 977
  • [40] RANDOM-WALK ON A RANDOM-WALK
    KEHR, KW
    KUTNER, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1982, 110 (03) : 535 - 549