Guided Convergence for Training Feed-forward Neural Network using Novel Gravitational Search Optimization

被引:0
|
作者
Saha, Sankhadip [1 ]
Chakraborty, Dwaipayan [2 ]
Dutta, Oindrilla [1 ]
机构
[1] NetajiSubhash Engn Coll, Dept Elect Engn, Kolkata, India
[2] NetajiSubhash Engn Coll, Dept Elect & Instru Engn, Kolkata, India
关键词
Meta-heuristic; optimization; GSA; feed-forward neural network; local minima; ALGORITHM; BACKPROPAGATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Training of feed-forward neural network using stochastic optimizationtechniques recently gained a lot of importance invarious pattern recognition and data miningapplications because of its capability of escaping local minima trap. However such techniques may suffer fromslow and poor convergence. This fact inspires us to work onmeta-heuristic optimization technique for training the neural network. In this respect, to train the neural network, we focus on implementing thegravitational search algorithm(GSA) which is based on the Newton's law of motion principle and the interaction of masses. GSA has good ability to search for the global optimum, but it may suffer from slow searching speed in the lastiterations. Our work is directed towards the smart convergence by modifying the original GSA and also guiding the algorithm to make it immune to local minima trap. Results on various benchmark datasets prove the robustness of the modified algorithm.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A new scheme for training feed-forward neural networks
    AbdelWahhab, O
    SidAhmed, MA
    PATTERN RECOGNITION, 1997, 30 (03) : 519 - 524
  • [32] A Novel Approach for Specification Testing on Heart Disease Detection Using Feed-Forward Neural Network
    Naresh E.
    Darshan S.L.S.
    Srinidhi N.N.
    Niranjanmurthy M.
    Dayananda P.
    SN Computer Science, 4 (6)
  • [33] Design of a multilayered feed-forward neural network using hypersphere neurons
    Banarer, V
    Perwass, C
    Sommer, G
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2003, 2756 : 571 - 578
  • [34] On the practice using feed-forward neural network for the inverse problem of EIT
    Rao, LY
    Yan, WL
    He, RJ
    Ding, RJ
    ELECTROMAGNETIC FIELD PROBLEMS AND APPLICATIONS (ICEF '96), 1997, : 264 - 267
  • [35] Botnet Detection Using a Feed-Forward Backpropagation Artificial Neural Network
    Ahmed, Abdulghani Ali
    COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2018), 2019, 888 : 24 - 35
  • [36] Classification of heart sounds using a Multilayer Feed-Forward Neural Network
    Shamsuddin, N.
    Mustafa, M. N.
    Husin, S.
    Taib, M. N.
    2005 ASIAN CONFERENCE ON SENSORS AND THE INTERNATIONAL CONFERENCE ON NEW TECHNIQUES IN PHARMACEUTICAL AND BIOMEDICAL RESEARCH, PROCEEDINGS, 2005, : 87 - 90
  • [37] Design of resonant metasurface absorber using feed-forward neural network
    Abraray, Abdelghafour
    Baghel, Amit
    Maslovski, Stanislav
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2024, 66 (01)
  • [38] An Evolutionary Algorithm for Feed-Forward Neural Networks Optimization
    Safi, Youssef
    Bouroumi, Abdelaziz
    2014 SECOND WORLD CONFERENCE ON COMPLEX SYSTEMS (WCCS), 2014, : 475 - 480
  • [39] On the feed-forward neural network for analyzing pantograph equations
    Az-Zo'bi, Emad A.
    Shah, Rasool
    Alyousef, Haifa A.
    Tiofack, C. G. L.
    El-Tantawy, S. A.
    AIP ADVANCES, 2024, 14 (02)
  • [40] Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach
    Talaat, M.
    Farahat, M. A.
    Mansour, Noura
    Hatata, A. Y.
    ENERGY, 2020, 196