Estimating the time-varying parameters of SDE models by maximum principle

被引:0
|
作者
Filatova, Darya V. [1 ]
Orlowski, Andrzej
Dicoussar, Vasilii [2 ]
机构
[1] Jan Kochanowski Univ Kielce, PL-25029 Kielce, Poland
[2] RAS, Dorodnicyn Comp Ctr, Moscow 119991, Russia
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a parameter estimation method of stochastic differential equations with time-varying coefficients, where data can be observed at discrete points of time. Our objective is to develop the uniform mathematical technique to solve the parameter estimation problem for stochastic differential equations with both ordinary and fractional Brownian motions. This estimation principle is based on the replacement of a stochastic differential equation by a system of ordinary differential equations, which present the moment functions, and on the application of the Pontryagin's maximum principle to find the optimal estimates of the time-varying coefficients of the initial equation. The key point is the constraints structural selection, which leads to major modifications of algorithms of analytical and numerical solutions. This estimation method is applied to study the North Atlantic herring population dynamics.
引用
收藏
页码:401 / 406
页数:6
相关论文
共 50 条
  • [31] Estimation of Time-Varying Parameters in Statistical Models: An Optimization Approach
    Dimitris Bertsimas
    David Gamarnik
    John N. Tsitsiklis
    Machine Learning, 1999, 35 : 225 - 245
  • [32] Estimation of smooth time-varying parameters in state space models
    Zhu, Haihong
    Wu, Hulin
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2007, 16 (04) : 813 - 832
  • [33] Estimation of time-varying parameters in statistical models: An optimization approach
    Bertsimas, D
    Gamarnik, D
    Tsitsiklis, JN
    MACHINE LEARNING, 1999, 35 (03) : 225 - 245
  • [34] Estimation of time-varying parameters in statistical models: An optimization approach
    Sloan School of Management, Operations Research Center, MIT, Cambridge, MA 02139, United States
    不详
    不详
    不详
    Mach Learn, 3 (225-245):
  • [35] Semiparametric model building for regression models with time-varying parameters
    Zhang, Ting
    JOURNAL OF ECONOMETRICS, 2015, 187 (01) : 189 - 200
  • [36] The maximum flow in a time-varying network
    Sha, D
    Cai, X
    Wong, CK
    OPTIMIZATION, 2000, 48 : 437 - 456
  • [37] Estimating Time-Varying Factor Exposures
    Ang, Andrew
    Madhavan, Ananth
    Sobczyk, Aleksander
    FINANCIAL ANALYSTS JOURNAL, 2017, 73 (04) : 41 - 54
  • [38] On Estimating Time-Varying Pauli Noise
    Rehman, Junaid Ur
    Al-Hraishawi, Hayder
    Duong, Trung Q.
    Chatzinotas, Symeon
    Shin, Hyundong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (04) : 2079 - 2089
  • [39] Estimating information in time-varying signals
    Cepeda-Humerez, Sarah Anhala
    Ruess, Jakob
    Tkacik, Gasper
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (09)
  • [40] Time-varying parameters prediction
    Grillenzoni, C
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2000, 52 (01) : 108 - 122