Indoor Video Flame Detection Based on Lightweight Convolutional Neural Network

被引:10
|
作者
Yang, Zhikai [1 ]
Bu, Leping [1 ]
Wang, Teng [1 ]
Yuan, Peng [1 ]
Ouyang Jineng [1 ]
机构
[1] Naval Univ Engn, Coll Elect Engn, Wuhan 430033, Peoples R China
基金
中国国家自然科学基金;
关键词
flame alarm; convolutional neural network; simple recurrent unit; 3D convolutional layer; FIRE; RECOGNITION;
D O I
10.1134/S1054661820030293
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
At present, all CNN-based fire detection algorithms identify fire by means of a single frame image, all of which demonstrate low accuracy under strong interferences or complex backgrounds such as flickering light or backgrounds with high level of brightness. To increase the accuracy of fire detection, this paper presents a neural network model which combines lightweight CNN with SRU. In this algorithm, the scene content is extracted by CNN and the dynamic characteristics of the flames are extracted from sequential frames. In this paper, Resnet18+SRU (V1-type) and Mobilenets+SRU (V2-type) are proposed. Based on the characteristics of flames at a fixed position within a short period of time, a 3D convolutional layer is added between the Mobilenets and the SRU in the V2-type model, resulting in the V3-type model. Based on a cross validation set containing multiple types of interference in an indoor environment, experiments were conducted to compare the three models proposed in this paper with other models. The experiment results showed that the accuracy of the method proposed in this paper is above 96%, about 25% higher than the accuracy of CNN-based fire alarm via single-frame image, and that the V3-type models with 3D convolutional layer has the highest accuracy and best overall performance.
引用
收藏
页码:551 / 564
页数:14
相关论文
共 50 条
  • [1] Indoor Video Flame Detection Based on Lightweight Convolutional Neural Network
    Zhikai Yang
    Leping Bu
    Teng Wang
    Peng Yuan
    Ouyang Jineng
    Pattern Recognition and Image Analysis, 2020, 30 : 551 - 564
  • [2] A Lightweight Convolutional Neural Network Flame Detection Algorithm
    Li, Wenzheng
    Yu, Zongyang
    PROCEEDINGS OF 2021 IEEE 11TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2021), 2021, : 83 - 86
  • [3] Video Based Smoke and Flame Detection Using Convolutional Neural Network
    Son, GeumYoung
    Park, Jang-Sik
    Yoon, Byung-Woo
    Song, Jong-Gwan
    2018 14TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS), 2018, : 365 - 368
  • [4] FlameNet: a lightweight convolutional neural network for flame detection and localisation
    Hu, Xing
    Li, Mei
    Zhang, Dawei
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2023, 91 (1-3) : 87 - 106
  • [5] A convolutional neural network-based flame detection method in video sequence
    Zhong, Zhen
    Wang, Minjuan
    Shi, Yukun
    Gao, Wanlin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (08) : 1619 - 1627
  • [6] A convolutional neural network-based flame detection method in video sequence
    Zhen Zhong
    Minjuan Wang
    Yukun Shi
    Wanlin Gao
    Signal, Image and Video Processing, 2018, 12 : 1619 - 1627
  • [7] Lightweight Object Detection Network Based on Convolutional Neural Network
    Cheng Yequn
    Yan, Wang
    Fan Yuying
    Li Baoqing
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)
  • [8] Video Flame Detection Method Based on Two-Stream Convolutional Neural Network
    Yu, Naigong
    Chen, Yue
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 482 - 486
  • [9] Lane Detection Based on a Lightweight Convolutional Neural Network
    Hu Jie
    Xiong Zongquan
    Xu Wencai
    Cao Kai
    Lu Ruoyu
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (10)
  • [10] An Indoor Fire Detection Method Based on Multi-Sensor Fusion and a Lightweight Convolutional Neural Network
    Deng, Xinwei
    Shi, Xuewei
    Wang, Haosen
    Wang, Qianli
    Bao, Jun
    Chen, Zhuming
    Cataldo, Andrea
    SENSORS, 2023, 23 (24)